Tohoku Mathematical Journal

Compressed polytopes and statistical disclosure limitation

Seth Sullivant

Full-text: Open access


We provide a characterization of the compressed lattice polytopes in terms of their facet defining inequalities and prove that every compressed lattice polytope is affinely isomorphic to a 0/1-polytope. As an application, we characterize those graphs whose cut polytopes are compressed and discuss consequences for studying linear programming relaxations in statistical disclosure limitation.

Article information

Tohoku Math. J. (2), Volume 58, Number 3 (2006), 433-445.

First available in Project Euclid: 17 November 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]
Secondary: 90C10: Integer programming

Compressed polytope disclosure limitation algebraic statistics integer programming cut polytope


Sullivant, Seth. Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. (2) 58 (2006), no. 3, 433--445. doi:10.2748/tmj/1163775139.

Export citation


  • F. Barahona and A. R. Mahjoub, On the cut polytope, Math. Programming 36 (1986), 157--173.
  • L. Buzzigoli and A. Giusti, An algorithm to calculate the lower and upper bounds of the elements of an array given its marginals, Statistical Data Protection Proceedings, 131--147, Eurostat, Luxembourg, 1999.
  • S. D. Chowdhury, G. T. Duncan, R. Krishnan, S. F. Roehrig and S. Mukherjee, Disclosure detection in multivariate categorical databases: auditing confidentiality protection through two new matrix operators, Management Science 45 (1999), 1710--1723.
  • M. M. Deza and M. Laurent, Geometry of cuts and metrics, Algorithms Combin. 15, Springer-Verlag, Berlin, 1997.
  • P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), 363--397.
  • N. Eriksson, S. E. Fienberg, A. Rinaldo and S. Sullivant, Polyhedral conditions for the nonexistence of the MLE for hierarchical log-line models, J. Symbolic Comput. 41 (2006), 222--233.
  • E. Gawrilow and M. Joswig, Polymake: a framework for analyzing convex polytopes, Polytopes--combinatorics and computation (Oberwolfach, 1997), DMV Sem. 29, Birkäuser, Basel, 2000.
  • C. Haase, Lattice polytopes and unimodular triangulations, Dissertation, TU Berlin, 2000.
  • S. Hoşten and B. Sturmfels, Computing the integer programming gap, To appear in Combinatorica, arXiv:math.OC/0301266, 2003.
  • H. Ohsugi and T. Hibi, Convex polytopes all of whose reverse lexicographic initial ideals are squarefree, Proc. Amer. Math. Soc. 129 (2001), 2541--2546.
  • P. D. Seymour, Matroids and multicommodity flows, European J. Combin. 2 (1981), 257--290.
  • R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333--342.
  • B. Sturmfels, Gröbner bases and convex polytopes, Univ. Lecture Ser. 8, Amer. Math. Soc., Providence, R.I., 1995.
  • G. Ziegler, Lectures on polytopes, Grad. Texts in Math. 152, Springer-Verlag, New York, 1995.