Tohoku Mathematical Journal

Compressed polytopes and statistical disclosure limitation

Seth Sullivant

Full-text: Open access

Abstract

We provide a characterization of the compressed lattice polytopes in terms of their facet defining inequalities and prove that every compressed lattice polytope is affinely isomorphic to a 0/1-polytope. As an application, we characterize those graphs whose cut polytopes are compressed and discuss consequences for studying linear programming relaxations in statistical disclosure limitation.

Article information

Source
Tohoku Math. J. (2), Volume 58, Number 3 (2006), 433-445.

Dates
First available in Project Euclid: 17 November 2006

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1163775139

Digital Object Identifier
doi:10.2748/tmj/1163775139

Mathematical Reviews number (MathSciNet)
MR2273279

Zentralblatt MATH identifier
1121.52028

Subjects
Primary: 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]
Secondary: 90C10: Integer programming

Keywords
Compressed polytope disclosure limitation algebraic statistics integer programming cut polytope

Citation

Sullivant, Seth. Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. (2) 58 (2006), no. 3, 433--445. doi:10.2748/tmj/1163775139. https://projecteuclid.org/euclid.tmj/1163775139


Export citation

References

  • F. Barahona and A. R. Mahjoub, On the cut polytope, Math. Programming 36 (1986), 157--173.
  • L. Buzzigoli and A. Giusti, An algorithm to calculate the lower and upper bounds of the elements of an array given its marginals, Statistical Data Protection Proceedings, 131--147, Eurostat, Luxembourg, 1999.
  • S. D. Chowdhury, G. T. Duncan, R. Krishnan, S. F. Roehrig and S. Mukherjee, Disclosure detection in multivariate categorical databases: auditing confidentiality protection through two new matrix operators, Management Science 45 (1999), 1710--1723.
  • M. M. Deza and M. Laurent, Geometry of cuts and metrics, Algorithms Combin. 15, Springer-Verlag, Berlin, 1997.
  • P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), 363--397.
  • N. Eriksson, S. E. Fienberg, A. Rinaldo and S. Sullivant, Polyhedral conditions for the nonexistence of the MLE for hierarchical log-line models, J. Symbolic Comput. 41 (2006), 222--233.
  • E. Gawrilow and M. Joswig, Polymake: a framework for analyzing convex polytopes, Polytopes--combinatorics and computation (Oberwolfach, 1997), DMV Sem. 29, Birkäuser, Basel, 2000.
  • C. Haase, Lattice polytopes and unimodular triangulations, Dissertation, TU Berlin, 2000.
  • S. Hoşten and B. Sturmfels, Computing the integer programming gap, To appear in Combinatorica, arXiv:math.OC/0301266, 2003.
  • H. Ohsugi and T. Hibi, Convex polytopes all of whose reverse lexicographic initial ideals are squarefree, Proc. Amer. Math. Soc. 129 (2001), 2541--2546.
  • P. D. Seymour, Matroids and multicommodity flows, European J. Combin. 2 (1981), 257--290.
  • R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333--342.
  • B. Sturmfels, Gröbner bases and convex polytopes, Univ. Lecture Ser. 8, Amer. Math. Soc., Providence, R.I., 1995.
  • G. Ziegler, Lectures on polytopes, Grad. Texts in Math. 152, Springer-Verlag, New York, 1995.