
Tohoku Math. J.
58 (2006), 433–445

COMPRESSED POLYTOPES AND
STATISTICAL DISCLOSURE LIMITATION

SETH SULLIVANT

(Received January 5, 2005, revised December 14, 2005)

Abstract. We provide a characterization of the compressed lattice polytopes in terms
of their facet defining inequalities and prove that every compressed lattice polytope is affinely
isomorphic to a 0/1-polytope. As an application, we characterize those graphs whose cut poly-
topes are compressed and discuss consequencesfor studying linear programming relaxations
in statistical disclosure limitation.

1. Introduction. A lattice polytopeP is called compressed if every pulling triangu-
lation ofP using only the lattice points inP is unimodular. Compressed polytopes are natural
to study because they represent a more inclusive class of polytopes than the unimodular poly-
topes (polytopes where every triangulation isunimodular). Furthermore, many naturally oc-
curring polytopes are compressed. An important example is the Birkhoff polytope of doubly
stochastic matrices as shown in [12]. In fact, the compressed nature of the Birkhoff polytope
played a crucial role in the work of Diaconis andSturmfels [5] for the statistical analysis of
ranked data. Ohsugi and Hibi’s paper [10] contains many other examples. In this paper, we
characterize the compressed polytopes by their facet defining inequalities, extending a result
from [10].

Part of our motivation for studying compressed polytopes comes from their appearance
in algebraic statistics: the marginal polytopes of decomposable hierarchical models are com-
pressed. Due to the presence of a transitive symmetry group on these marginal polytopes, the
connections between compressed polytopes and certain optimization problems in statistical
disclosure limitation are quite deep. As an application of the characterization of compressed
polytopes, we will show that the linear programming relaxations for maximizing cell entries
given marginal sums yield sharp integer bounds for all values of the marginals if and only if
the marginal polytopeP∆ is compressed. Coupled with some results about compressed cut
polytopes, we are able to describe some new nondecomposable families of marginals where
the linear programming relaxation yields sharp integer bounds for the maximization problems.

Here is the outline for our paper. In the next section we prove the main result clas-
sifying compressed polytopes by their facet defining inequalities. We also show that every
compressed polytope is affinely isomorphic to a0/1 polytope and prove a result about pulling
triangulations for highly symmetric polytopes. In Section 3, we apply the facet description of
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compressed polytopes to characterize the compressed cut polytopes. In Section 4 we explain
the connection between compressed polytopes and linear optimization. Section 5 is devoted
to applications of our results in statistical disclosure limitation which provides new families of
marginals where linear programming yields sharp upper bounds on cell entries. These results
also suggest families in which to search for large integer programming gaps [9].

REMARK 1.1. After submitting this article for publication, we discovered that a large
part of Theorem 2.4 already appeared in the dissertation of Christian Haase [8]. That result
was based on an unpublished proof of Francisco Santos. The applications appearing in this
article are all new.

2. Characterization of compressed polytopes. In this section, we derive the char-
acterization of the structure of the facet definining inequalities of compressed polytopes. We
assume the reader is familiar with polyhedral geometry and regular subdivisions. A standard
reference for this material is [14].

DEFINITION 2.1. LetP be a lattice polytope in Euclideand-spaceRd andp1, . . . , pk

an ordered list of the lattice points inP . The pulling triangulation ∆pull(P ) induced by
this ordering is constructed recursively as follows: Ifp1, . . . , pk are affinely independent,
∆pull(P ) = {{p1, . . . , pk}}. Otherwise, we set

∆pull(P ) =
⋃
F

{{p1} ∪ σ | σ ∈ ∆pull(F )}

where the union is over all facetsF of P not containingp1, and the ordering of the lattice
points inF is the ordering induced by the ordering of the lattice points inP .

DEFINITION 2.2. A triangulation∆ of a lattice polytopeP is calledunimodular if
every simplex in the triangulation attains the minimal volume among all simplices formed by
taking convex hulls of points in the lattice spanned by the lattice points inP .

DEFINITION 2.3. A lattice polytopeP is compressed if every pulling triangulation of
P using the lattice points inP is unimodular. If we are given a specific presentation ofP =
PA := conv(A1, . . . , An) as the convex hull of a finite set of integral points, we say thatPA

is compressed if it is compressed with respect to the smallest lattice containingA1, . . . , An.

Compressed polytopes were introduced by Stanley in [12] where unimodular was meant
with respect to the latticeZd . Our notion of unimodular is with respect to the smallest lattice
containing the integral points inP . We say that two lattice polytopesP andQ are lattice
isomorphic if there is an affine isomorphism which is a bijection on their lattice points. The
main result of this section is the following

THEOREM 2.4. Let L be a lattice and suppose that P is a lattice polytope having the
irredundant linear description P = {x ∈ Rd | aT

i x ≥ bi, i = 1, . . . , n}. Then the following
conditions are equivalent:

1. P is compressed.
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2. For each i there is at most one nonzero real number mi such that the set {x ∈
L | aT

i x = bi + mi} ∩ P is nonempty.
3. P is lattice isomorphic to an integral polytope of the form Cn ∩ L, where Cn is the

n-dimensional unit hypercube and L is an affine subspace.

This result strengthens a result of Ohsugi and Hibi [10] who essentially proved(3) ⇒
(1). Francisco Santos also proved(2) ⇒ (1) but the result was never published. Subsequently,
Haase included Santos’ proof in his dissertation [8]. Condition (2) suggests that the term
“compressed” is apt because compressed polytopes are squeezed between two hyperplanes in
every facet defining direction.

PROOF. (1) ⇒ (2). Supppose thatP is compressed and that for somei there were
two valuesm > m′ with {x ∈ L | aT

i x = bi + m} ∩ P and{x ∈ L | aT
i x = bi + m′} ∩ P

nonempty. Letpm ∈ {x ∈ L | aT
i x = bi + m} ∩ P andpm′ ∈ {x ∈ L | aT

i x = bi + m′} ∩ P .
Then compare the pulling triangulations withpm first and withpm′ first and the same ordering
of the lattice points in the facetF = {x ∈ Rd | aT

i x = bi} ∩ P . Given a simplexσ in the
pulling triangulation ofF , the ratio of volumes Vol({pm} ∪ σ)/Vol({pm′ } ∪ σ) = m/m′ > 1.
Hence the pulling triangulation ofP with pm first could not be unimodular, contradicting the
fact thatP was compressed.

(2) ⇒ (3). Now suppose thatP satisfies Condition (2) above. SinceP is a lattice
polytope, Condition (2) forces every lattice point inP to be a vertex since, given a facet
defining inequalityaT x ≥ b, the largest valuem such thatP ∩ {x ∈ Rd | aT x = b + m} is
nonempty must haveP ∩ {x ∈ L | aT x = b + m} nonempty, as well as this set must contain
a vertex ofP . If there was a lattice pointp in P which was not a vertex, it is in the relative
interior of some faceF of P of dimension greater than or equal to 1. This pointp could not be
in the setP ∩ {x ∈ Rd | aT x = b + m} (wherem is the unique largest value where this set is
nonempty) for any facet ofP , aT x = b which defines a nontrivial facet ofF and, in particular,
sinceaT p > b, there must be some valuem′ < m such thatP ∩ {x ∈ L | aT x = b + m′} is
nonempty.

Now we must show thatP is affinely isomorphic to an integral polytope that is the
intersection of the unit hypercube with an affine subspace. Without loss of generality, we may
suppose thatP does not lie in an affine subspace: if it did, we would make a unimodular
change of coordinates to project to a lower dimensional space. This implies that in Condition
(2) there is exactly one nonzeromi for eachi. Consider the linear transformationπ : Rd →
Rn given by

x �→ ((aT
1 x − b1)/m1, . . . , (a

T
n x − bn)/mn) .

The imageπ(P ) is a 0/1 polytope, since every vertex ofP is mapped to a 0/1 vector. A
point p lies in π(P ) if and only if p ∈ Cn andp is in the affine span of the image of the
vertices, because the affine transformationπ sends the facet defining inequalityaT

i x ≥ bi to
the inequalityyi ≥ 0. These facts together imply thatP satisfies Condition(3).

(3) ⇒ (1). If the lattice polytopeP satisfies(3) andπ is the affine transformation,
thenP is compressed if and only ifQ = π(P ) is compressed, since this transformation maps
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the lattice points inP to the integer points inQ, andP andQ are otherwise isomorphic.
Thus it remains to show that integral polytopesQ of the formQ = Cn ∩ {x : Ax = b}
are compressed. This result is proven in [10, Lemma 2.2]. However, we will provide a short
self-contained proof of it.

Let Q be an integral polytope of the formCn ∩ {x | Ax = b}. We will show thatQ is
compressed by induction on the dimension. IfQ has dimension 0, there is nothing to show.
Otherwise, supposeQ has dimensiond and consider any ordering of the vertices ofQ. Let
p be the first vertex and construct the pulling triangulation. This is obtained by constructing
the pulling triangulation of each facet ofQ not containingp and coning each of these trian-
gulations overp. The normalized volume of each simplex is the orthogonal distance fromp

to the facet times the volume of corresponding simplex in that facet. However, each facet has
dimensiond−1 and is of the formCn∩{x | Ax = b, xi = 0} or Cn∩{x | Ax = b, xi = 1} for
somei, and hence is compressed by induction. Thus each simplex in the pulling triangulation
of each facet has normalized volume one. Further, the orthogonal distance to the correspond-
ing facet is 1, sincepi = 1 when the facet is defined by the equationxi = 0. So every simplex
in the pulling triangulation is unimodular. ThusQ is compressed. �

Many lattice polytopes which arise in applications (in particular, the statistical applica-
tions from Section 5) possess symmetry groups that are transitive on their lattice points. From
the preceding theorem we can deduce that for such polytopes either every pulling triangulation
is unimodular or none are.

COROLLARY 2.5. Suppose that P is a lattice polytope and the group of affine symme-
tries Γ of P is transitive on the lattice points of P . Then either P is compressed or no pulling
triangulation of P is unimodular.

PROOF. We must show that ifP is not compressed, then every pulling triangulation
is not unimodular. To this end we can suppose thatP fails to satisfy Condition(2) in the
preceding theorem. Then there exists a facetF = {x ∈ Rd | aT x = b} of P and two nonzero
realsm > m′ such that{x ∈ L | aT x = b + m′} ∩ P and{x ∈ L | aT x = b + m} ∩ P are
nonempty. Consider any ordering of the vertices ofP and the resulting pulling triangulation.
After applying a suitable elementg ∈ Γ to this ordering, we can assume that the first point
pm in the pulling triangulation is in the set{x ∈ L | aT x = b + m} ∩ P . Consider any
other pulling triangulation whichhas the same order of the points inF and a pointpm′ in
{x ∈ L | aT x = b + m′} ∩ P as the first vertex. Among the simplices in the first pulling
triangulation ofP are those of the form{pm} ∪ σ and in the second pulling triangulation
{pm′ } ∪ σ , whereσ is in the induced pulling triangulation ofF . We see that the ratio of
volumes of these simplices Vol({pm}∪σ)/Vol({pm′ }∪σ) = m/m′ and hence the first pulling
triangulation could not be unimodular. However, this pulling triangulation was arbitrary, so
no pulling triangulation ofP is unimodular. �

3. Compressed cut polytopes. As an application of our characterization of com-
pressed polytopes, we describe those graphsG whose cut polytopes are compressed. We
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assume throughout thatG = (Vn,E) is an undirected graph with verticesVn = [n] :=
{1, 2, . . . , n} and edgesE without loops or multiple edges. Our definitions and notation come
from [4], and we assume some familiarity with the basic facts about these polytopes.

DEFINITION 3.1. LetS ⊆ Vn. The cut semimetric onG induced byS is the 0/1 vector
δG(S) in RE defined by

δG(S)ij = 1 if |S ∩ {i, j }| = 1 , and δG(S)ij = 0 otherwise,

whereij ∈ E. The cut polytope ofG is the 0/1 polytope

Cut�(G) = conv(δG(S)|S ⊆ Vn) .

We will apply Condition (2) from Theorem 2.4 to deduce the following

THEOREM 3.2. The cut polytope Cut�(G) of a graph G is compressed if and only if
G has no K5 minors and every induced cycle in G has length less than or equal to 4.

A cycle in a graph is induced if there is no chord in the graph cutting across it. Equiva-
lently, a cycle is induced if it is an induced subgraph. The proof of the theorem requires a few
intermediate results.

LEMMA 3.3. If Cut�(G) is compressed and H is obtained from G by contracting an
edge, then Cut�(H) is compressed.

PROOF. Let ij be the contracted edge. The polytope Cut�(H) is isomorphic to
{x | xij = 0} ∩ Cut�(G), and hence is isomorphic to a face of Cut�(G). But every face
of a compressed polytope is compressed. �

LEMMA 3.4. If Cut�(G) is compressed and H is an induced subgraph of G, then
Cut�(H) is compressed.

PROOF. Let E′ ⊂ E be the union of all edges inG not incident toH together with
exactly one edge which is incident toH but not contained inH (provided such an edge exists).
Then Cut�(H) is isomorphic to{x | xe = 0, e ∈ E′} ∩ Cut�(G), and hence is isomorphic to
a face of Cut�(G). But every face of a compressed polytope is compressed. �

LEMMA 3.5. The polytope Cut�(K5) is not compressed.

PROOF. One facet defining inequality for Cut�(K5) comes by via the following hyper-
metric construction [4]. Letb = (1, 1, 1,−1,−1) and consider the inequality∑

1≤i<j≤5

bibjxij ≤ 0 ,

which defines a facet of Cut�(K5) called a pentagonal facet. To show that Cut�(K5) is not
compressed, it suffices to exhibit two setsS, T ⊂ V5 such that

∑
1≤i<j≤5

bibj δK5(S)ij <
∑

1≤i<j≤5

bibj δK5(T )ij < 0 ,
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since the cut semimetrics are integral points in the cut polytope. TakingS = {1, 2, 3} and
T = {1, 2} yields

−6 =
∑

1≤i<j≤5

bibj δK5(S)ij <
∑

1≤i<j≤5

bibj δK5(T )ij = −2 < 0 . �

The preceding three Lemmas imply that ifwe want to identify graphs whose cut poly-
topes are compressed, we may restrict attention to those graphs withoutK5 minors. In general,
it remains a hard open problem to give a facet description of the cut polytopes, however, in the
special case of graphs withoutK5 minors, a complete irredundant linear description is known.

THEOREM 3.6. Let G be a graph without K5 minors. Then Cut�(G) is the solution
set of the following linear inequalities:

0 ≤ xe ≤ 1 for e ∈ E ,∑
e∈F

xe −
∑

e∈C\F
xe ≤ |F | − 1 ,

where C ranges over the induced cycles of G and F ranges over the odd subsets of C. Each
of the linear inequalities of the second type is facet defining and the inequalities 0 ≤ xe ≤ 1
may or may not be facet defining.

Theorem 3.6 is a consequence of the decomposition theory for binary matroids. It is
proven in [1] and depends on results in [11]. Thus to prove the main theorem in this sec-
tion we just need to determine under what conditions these facet defining inequalities satisfy
Condition(2) from Theorem 2.4. For the inequalities of type 0≤ xe ≤ 1, these always sat-
isfy Condition (2) regardless of whether or not they are facet defining. Since the structure of
the remaining facet defining inequalities only depends on the induced cycles in the graph it
suffices to prove the following

LEMMA 3.7. Let be C an induced cycle of G, and F an odd subset of C. Then the set{
x ∈ Zd

∣∣∣∣
∑
e∈F

xe −
∑

e∈C\F
xe = |F | − 1 − m

}
∩ Cut�(G)

is nonempty for exactly �|C|/2
 − 1 nonzero values of m.

PROOF. Since the value of the linear functional
∑

e∈F xe −∑
e∈C\F xe only depends on

the edges inC, we can assume thatG = C. Furthermore, the operation of switching (see [4])
shows that each such facet is equivalent (i.e., up to change of coordinates) to the facet given
by x12 − x23 − · · · − x1n ≤ 0. So it suffices to prove the Lemma in this setting.

Since cut semimetricsδG(S) are the only integral points in Cut�(G), it suffices to deter-
mine what valuesδG(S)12 − δG(S)23 − · · · − δG(S)1n can take. Modulo 2, we have

δG(S)12 − δG(S)23 − · · · − δG(S)1n = δG(S)12 + δG(S)23 + · · · + δG(S)1n ≡ 0 mod 2

soδG(S)12 − δG(S)23 − · · · − δG(S)1n must be even. SinceδG(S)ij is either a zero or a one,
there are at most�|C|/2
− 1 nonzero values that this expression can take. However, for each
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j with 0 < j ≤ �|C|/2
 the setSj = {2i | i ∈ [j ]} has

δG(Sj )12 − δG(Sj )23 − · · · − δG(Sj )1n = 2 − 2j ,

which completes the proof. �

4. Compressed polytopes in linear optimization. Compressed polytopes are closely
tied to linear integer optimization problems. In particular, we consider the following setup.
Let A be an integral matrix with columnsA1, A2, . . . , An. We assume throughout thatA is
homogeneous in the sense that there is a nonzero weight vectorw such thatwT Ai = 1 for all
i. For eachi consider the integer programming problem

Maximizexi subject to

Ax = b, x ≥ 0, x integral .

For giveni, A andb we denote the optimal value of the integer program byIP+
i (A, b). We

say a vectorb is IP-feasible ifb = Ax for some nonnegative integralx. The corresponding
linear programming relaxation drops the integrality consideration:

Maximizexi subject to

Ax = b, x ≥ 0 .

We denote the optimal value of the linear programming relaxation byLP+
i (A, b). Since lin-

ear programs are considerably easier to solve than integer programs, a fundamental question
in optimization is to decide what conditions guarantee thatLP+

i (A, b) = IP+
i (A, b). LetPA

be the polytope obtained by taking the convex hull of the columns ofA. The pulling triangu-
lations ofPA provide a useful sufficient condition to guaranteeLP+

i (A, b) = IP+
i (A, b).

PROPOSITION 4.1. For fixed A and i, LP+
i (A, b) = IP+

i (A, b) for all IP-feasible b if
there exists some ordering of the columns of A with Ai first such that the pulling triangulation
of PA using only A1, . . . , An is unimodular.

PROOF. We provide a sketch of the proof which depends on some well-known results
in computational algebra. Details can be found in [13, Chapter 8]. The linear programming
relaxation solves the standard form integer program for all right hand sidesb if an associated
intial ideal of the toric idealIA is squarefree. The initial ideal is squarefree if and only if the
corresponding regular triangulation ofPA is unimodular. In the case where the associated cost
vector is the maximization of thexi coordinate, the corresponding triangulation is a pulling
triangulation ofPA with Ai first. �

The condition in Proposition 4.1 is not, however, necessary: ifLP+
i (A, b) = IP+

i (A, b)

for all b, there need not exist a unimodular pulling triangulation ofPA with Ai first as the
following example illustrates.
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EXAMPLE 4.2. Consider the matrixA given by

A =

1 1 1 1 1

0 0 1 2 3
1 0 0 0 0


 .

This matrix has the property thatLP+
1 (A, b) = IP+

1 (A, b) for all IP-freasibleb. Indeed,
given an IP feasibleb, every nonnegative vectorx with Ax = b hasx1 = b3. On the other
hand,PA has no unimodular pulling triangulations.

This subtlety drops away if we require thatLP+
i (A, b) = IP+

i (A, b) for all IP-feasible
b and for all i.

THEOREM 4.3. Let A be a homogeneous matrix. Then LP+
i (A, b) = IP+

i (A, b) for
all i and all IP-feasible b if and only if PA is compressed.

Recall that in this context wherePA = conv(A1, . . . , An) we mean thatPA is com-
pressed with respect to the smallest lattice containingA1, . . . , An.

PROOF. If PA is compressed, then any pulling triangulation withAi first is unimodular,
which implies by Proposition 4.1 that the LP optimums equal the IP optimums. Conversely,
if PA is not compressed, there is a facet defining inequality that violates Condition (2) in
Theorem 2.4. We will use this violation to construct an IP feasibleb such that the LP optimum
for the maximization problem cannot equal the IP optimum.

Denote the violating facet byF = {x ∈ Rd | aT x = b}. SincePA is a polytope, there
is a largest real numberm such that{x ∈ L | aT x = b + m} is nonempty. We may suppose
thatA1 ∈ {x ∈ L | aT x = b + m}. We will partitionA2, . . . , An in the following manner:
aT Ai = b + m for i = 2, . . . , k, b < aT Ai < b + m for i = k + 1, . . . , l, andaT Ai = b for
i = l + 1, . . . , n. Let

K = kerZ(A) ∩ {y ∈ Zd | y1 < 0, y2 ≤ 0, . . . , yk ≤ 0, yk+1 ≥ 0, yk+2 ≤ 0 . . . , yl ≤ 0} .

Note thatK is nonempty, since there exist affine dependencies amongA1, the elements
of F ∩ L, andAk+1 (there are at leastd + 2 points in ad dimensional lattice). Furthermore,
any such affine dependency must havey1 andyk+1 with opposite signs, since neitherA1 nor
Ak+1 are contained inF . Among the vectors inK, let v ∈ K be any such vector withvk+1

with the minimal value among allv in K. This minimal value is strictly greater than 1. We
define the right-hand side vectorb which will violateLP+

1 (A, b) > IP+
1 (A, b) by

b =
∑

i|vi>0

viAi − Ak+1 .

Clearly, b is IP-feasible, since we have expressed it as a nonnegative combination of the
columns ofA.

First of all, we claim thatIP+
1 (A, b) = 0. If not, there is an improving integer vectoru ∈

K with such that the vectorv+ − ek+1 − u is nonegative and has first coordinate greater than
zero. The existence of such au violates our minimality assumption onvk+1 (sinceuk+1 ≤
vk+1 − 1). On the other hand, the rational vectoru = (vk+1)/(vk+1)v is an improving vector
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such that̃v = v+ − ek+1 − u is a nonnegative rational vector withAṽ = b andṽ1 > 0 so that
LP+

1 (A, b) > 0. �

5. Applications in statistical disclosure limitation. One motivation for studying
compressed polytopes comes from their relationship to certain optimization problems which
arise in statistical disclosure limitation. The general problem in this area is to determine what
information about individual survey respondents can be inferred from the release of partial
data. This type of problem arises when government agencies like a census bureau gather in-
formation about citizens and wish to release partial data to the public for the purposes of data
analysis but are required by law to maintain the privacy of citizens.

The case we consider here concerns the release of margins of a multiway contingency
table. In this case, an individual cell entry is considered secure if among all nonnegative
integral tables with given released marginal totals the upper and lower bounds on the cell
entry are far enough apart [2, 3]. This naturally leads to standard form integer programs of
the following type:

Maximize/Minimizex0 subject to

A∆x = b, x ≥ 0 , and x integral,

whereA∆ is a certain 0/1 matrix which computes the released marginsb of the multiway
table x. A heuristic for approximating the solution to this integer program is to solve the
linear programming relaxations:

Maximize/Minimizex0 subject to

A∆x = b and x ≥ 0 .

A fundamental problem in this area is to determine under what conditions the linear program-
ming relaxation is equal to the true integer value. We will focus here on the maximization
problem. To state our results, we first need to establish notation for the contingency table
problems of interest. Herex denotes ad1 × d2 × · · · × dn multiway contingency table. The
particular collection of margins of this table which are released are encoded by a simplicial
complex∆ on then-element set[n].

Each facetS ∈ ∆ corresponds to a released margin. Computing a collection of marginals
of a multiway table is a linear transformation. The matrix, represented in the standard basis,
which encodes this linear transformation is denoted byA∆. Note that the size of the matrixA∆

and problems related to linear programming relaxations depend on∆ and the integer vector
d = (d1, d2, . . . , dn) though we suppress the dependence ond when we use the notationA∆.
We use the notationP∆ to denote the convex hull of the columns of the matrixA∆. From the
previous section, we deduce the following basic fact.

COROLLARY 5.1. The linear programming relaxation solves the integer programs
IP+

0 (A∆, b) = LP+
0 (A∆, b) for all marginals b if and only if the marginal polytope P∆

is compressed.



442 S. SULLIVANT

PROOF. Because of the transitive symmetry group on the vertices ofP∆, IP+
0 (A∆, b) =

LP+
0 (A∆, b) for the0 cell entry if and only if this holds for all cell entries. Then by Theorem

4.3 this holds if and only ifP∆ is compressed. �

Thus we are led to study the following general problem:

PROBLEM 5.2. Characterize the pairs (∆, d) of simplicial complexes ∆ and integer
vectors d = (d1, . . . , dn) such that P∆ is compressed.

It seems a challenging problem to classify such marginals in general, since it would re-
quire the knowledge of many families of facet defining inequalities of the marginal polytopes.
There is very little known about these facet defining inequalities in general. In the remainder
of this section, we provide some constructions for producing compressed marginal polytopes.
As a corollary, we deduce that the marginal polytopes of decomposable models are com-
pressed. We also provide a complete characterization of compressed marginal polytopes in
two restricted cases.

There are a few standard operations on simplicial complexes that send compressed mar-
ginal polytopes to compressed marginal polytopes.

PROPOSITION 5.3. Suppose that the pair (∆, d) has P∆ compressed.
1. If ∆′ ⊂ ∆ is an induced subcomplex and d ′ the correspond integer vector, then the

pair (∆′, d ′) has P∆′ compressed.
2. If d ′ ≤ d coordinatate-wise, then the pair (∆′, d ′) with ∆′ = ∆ has P∆′ compressed.

PROOF. In both casesP∆′ is isomorphic to a face ofP∆. However, the faces of com-
pressed polytopes are compressed. �

PROPOSITION 5.4. Suppose that the pair (∆, d) has the marginal polytope P∆ com-
pressed. Let ∆′ be the new simplicial complex on [n+1] obtained from ∆ by ∆′ = {{n+1}∪
F | F ∈ ∆} and d ′ = (d1, . . . , dn, dn+1), where dn+1 is any positive integer. Then the pair
(∆′, d ′) has a compressed marginal polytope P∆′ .

PROOF. The marginal polytopeP∆′ is isomorphic to the direct join ofdn+1 copies of
P∆. But the direct join of compressed polytopes is compressed, since any triangulation of the
direct join is obtained by taking the direct join of the induced triangulations of the pieces. The
direct join of two unimodular triangulations is unimodular. �

DEFINITION 5.5. A simplicial complex∆ is called reducible with decomposition
(∆1, S,∆2) if

1. ∆1 and∆2 are induced subcomplexes of∆,
2. S ⊂ [n],
3. ∆1 ∪ ∆2 = ∆, and
4. ∆1 ∩ ∆2 = 2S .

A simplicial complex is calleddecomposable if ∆ is reducible and each of∆1 and∆2 is either
decomposable or a simplex.
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Given a reducible simplicial complex∆ with decomposition(∆1, S,∆2) together with
the integer vectord, denote byd1 andd2 the induced vectors with indices corresponding to
the nodes of∆1 and∆2, respectively.

PROPOSITION 5.6. If ∆ is reducible and the pairs (∆1, d
1) and (∆2, d

2) have com-
pressed marginal polytopes, then the marginal polytope P∆ is compressed.

PROOF. For reducible models∆, the marginal polytopes are given by

P∆ = P∆1 × P∆2 ∩ {(x, y) | π1(x) = π2(y)} ,

whereπ1 andπ2 are theS-marginal maps ofx andy, repsectively. In particular, the set of facet
defining inequalities ofP∆ is just the union of the facet defining ofP∆1 andP∆2. SinceP∆1

andP∆2 are compressed, these facet defining inequalites satisfy Condition (2) of Theorem
2.4. But this implies that they also satisfy Condition (2) of Theorem 2.4 with respect toP∆ as
well. This implies thatP∆ is compressed. �

COROLLARY 5.7. If ∆ is decomposable then P∆ is compressed.

PROOF. If ∆ = 2[n] thenP∆ is a simplex. Thus, if∆ is decomposable,P∆ is com-
pressed by applying Proposition 5.6 and induction on the number of facets of∆. �

The preceding propositions provide methods for producing compressed marginal poly-
topes from smaller compressed marginal polytopes. However, these results are far from giv-
ing a complete characterization of all pairs(∆, d) such that the marginal polytopes are com-
pressed. In the remainder of this section, we provide characterizations of compressed marginal
polytopes in two settings where we place “extremal” conditions on∆, or d or both.

PROPOSITION 5.8. Let ∆ be the boundary of an n−1 simplex. Then P∆ is compressed
if and only if for at most two i, di > 2 or n = 3 and up to symmetry d = (3, 3, d3).

PROOF. In the case where for at most twoi, di > 2, it is known thatP∆ is a unimodular
polytope (e.g., [13, Chapter 14]) and hence is compressed. The case wheren = 3 andd =
(3, 3, d3), the complete facet description of this polytope is known (e.g., [6]) and one verifies
that the facet defining inequalities in this case satisfy Condition (2) of Theorem 2.4. Direct
computation using Polymake [7] shows that Condition (2) of Theorem 2.4 fails in the case
n = 3, d = (3, 4, 4) andn = 4, d = (2, 3, 3, 3). These results together with Proposition 5.3
imply thatP∆ is compressed in no other cases. �

The cut polytopes from Section 3 are intimately tied to the marginal polytopes we are
interested in, in the special case whered = (2, 2, . . . , 2) and all facets of∆ are 0 or 1-
dimensional. In this case∆ is a graph and we have the following well-known result (see
[4]):

LEMMA 5.9. Given a graph ∆ and d = (2, 2, . . . , 2), there is a lattice isomorphism
of the marginal polytope P∆ to the cut polytope Cut�(∆̃), where ∆̃ is the graph obtained from
∆ by adding a new vertex v and all edges from v to the nodes of ∆.
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The lattice isomorphism in the preceding Lemma is known as the covariance mapping.
Then we can deduce:

THEOREM 5.10. Let ∆ be a graph and d = (2, 2, . . . , 2). Then P∆ is compressed if
and only if ∆ is free of K4 minors and every induced cycle in ∆ has length less than or equal
to 4.

PROOF. The graph∆̃ is free ofK5 minors and has all induced cycles of length less
than or equal to four if and only if∆ has noK4 minors and all induced cycles of length less
than or equal to four. Thus, this is a direct consequence of Theorem 3.2 characterizing the
compressed cut polytopes. �

In these cases we can in fact say more: even though the size of the integer program
seems exponential inn the number of nodes in the simplicial complex, in the case whereP∆

is compressed we can solve the corresponding linear program (and hence the integer program)
in polynomial time.

COROLLARY 5.11. Suppose that d = (2, 2, . . . , 2) and ∆ is a graph that is free of K4

minors and has every induced cycle of length less than or equal to four. Then the IP-maximum
value IP+

i (A∆, b) can be computed in polynomial time in n and the bit complexity of b.

PROOF. SinceIP+
i (A, b) = LP+

i (A, b) for these graphs, it suffices to show that the
linear program can be solved in polynomial time. However, the problem of maximizing a
coordinate is polynomial time equivalent to determining if a point lies inP∆. For graphs
withoutK4 minors, the containment problem can be decided in polynomial time as illustrated
in [4]. �

In general, we would like to understand how far the linear programming relaxations can
be from the true integer programming values for these optimization problems in statistical
disclosure limitation. This leads to the study of the integer programming gap [9]. A natural
question to ask is: How does the failure of Condition (2) in Theorem 2.4 relate to the integer
programming gap? A natural family of marginal polytopes where this problem could be
explored is the family of cycles.
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