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COMPRESSED POLYTOPESAND
STATISTICAL DISCLOSURE LIMITATION
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Abstract. We provide a characterization of the compressed lattice polytopes in terms
of their facet defining inequalities and prove that every compressed lattice polytope is affinely
isomorphic to a P1-polytope. As an application, we claaterize those graphs whose cut poly-
topes are compressed and discuss consequésrcstsidying linear programming relaxations
in statistical disclosure limitation.

1. Introduction. A lattice polytopeP is called compressed if every pulling triangu-
lation of P using only the lattice points iR is unimodular. Compressed polytopes are natural
to study because they represent a more inctusliass of polytopes than the unimodular poly-
topes (polytopes where every triangulatiomurgsmodular). Furthermore, many naturally oc-
curring polytopes are compressed. An important example is the Birkhoff polytope of doubly
stochastic matrices as shown in [12]. In fact, the compressed nature of the Birkhoff polytope
played a crucial role in the work of Diaconis aBtlirmfels [5] for the statistical analysis of
ranked data. Ohsugi and Hibi's paper [10] contains many other examples. In this paper, we
characterize the compressed polytopes by their facet defining inequalities, extending a result
from [10].

Part of our motivation for studying compressed polytopes comes from their appearance
in algebraic statistics: the marginal polytopes of decomposable hierarchical models are com-
pressed. Due to the presence of a transitive symmetry group on these marginal polytopes, the
connections between compressed polytopes and certain optimization problems in statistical
disclosure limitation are quite deep. As an application of the characterization of compressed
polytopes, we will show that the linear programming relaxations for maximizing cell entries
given marginal sums yield sharp integer bounds for all values of the marginals if and only if
the marginal polytope’, is compressed. Coupled with some results about compressed cut
polytopes, we are able to describe some new aoachposable families of marginals where
the linear programming relaxation yields sharp integer bounds for the maximization problems.

Here is the outline for our paper. In the next section we prove the main result clas-
sifying compressed polytopes by their facet defining inequalities. We also show that every
compressed polytope is affinely isomorphic t@/& polytope and prove a result about pulling
triangulations for highly s;nmetric polytopes. In Section 3, we apply the facet description of
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compressed polytopes to characterize the compressed cut polytopes. In Section 4 we explain
the connection between compressed polytopes and linear optimization. Section 5 is devoted
to applications of our results in statistical disclosure limitation which provides new families of
marginals where linear programming yields sharp upper bounds on cell entries. These results
also suggest families in which to search for large integer programming gaps [9].

REMARK 1.1. After submitting this article for pdication, we discovered that a large
part of Theorem 2.4 already appeared in thesditation of Christian Haase [8]. That result
was based on an unpublished proof of Francisco Santos. The applications appearing in this
article are all new.

2. Characterization of compressed polytopes. In this section, we derive the char-
acterization of the structure of the facet definining inequalities of compressed polytopes. We
assume the reader is familiar with polyhedral geometry and regular subdivisions. A standard
reference for this material is [14].

DEFINITION 2.1. LetP be a lattice polytope in EuclideahspaceR? andps, ..., px
an ordered list of the lattice points iR. The pulling triangulation Apyi(P) induced by
this ordering is constructed recursively as follows:pif, . .., p; are affinely independent,
Apull(P) = {{p1, . .., pc}}. Otherwise, we set

Apui(P) = | Jp1}Uo | o € Apun(F)}
F

where the union is over all facefs of P not containingp1, and the ordering of the lattice
points inF is the ordering induced by the ordering of the lattice point®in

DEFINITION 2.2. A triangulationA of a lattice polytopeP is calledunimodular if
every simplex in the triangulation attains the minimal volume among all simplices formed by
taking convex hulls of points in the lattice spanned by the lattice poings in

DEFINITION 2.3. A lattice polytopeP is compressed if every pulling triangulation of
P using the lattice points i® is unimodular. If we are given a specific presentatioPo&
P4 := conAy, ..., A,) as the convex hull of a finite set of integral points, we say that
is compressed if it is compressed with respect to the smallest lattice contaiding . ., A,.

Compressed polytopes were introduced by Stanley in [12] where unimodular was meant
with respect to the latticE?. Our notion of unimodular is with respect to the smallest lattice
containing the integral points i®. We say that two lattice polytope® and Q arelattice
isomorphic if there is an affine isomorphism which is a bijection on their lattice points. The
main result of this section is the following

THEOREM 2.4. Let £ bealattice and suppose that P is a lattice polytope having the
irredundant linear description P = {x € R? | al.TX > b;,i = 1,...,n}. Then thefollowing
conditions are equivalent:

1. P iscompressed.
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2. For each i there is at most one nonzero real number m; such that the set {x €
L | a] x = b; + m;} N P isnonempty.

3. P islatticeisomorphic to an integral polytope of the form C,, N L, where C,, isthe
n-dimensional unit hypercube and L is an affine subspace.

This result strengthens a result of Ohsugi and Hibi [10] who essentially pi@yeg>
(1). Francisco Santos also prov&t) = (1) but the result was never published. Subsequently,
Haase included Santos’ proof in his dissertation [8]. Condition (2) suggests that the term
“compressed” is apt because compressed polytopes are squeezed between two hyperplanes in
every facet defining direction.

PROOF. (1) = (2). Supppose thaP is compressed and that for soméhere were
two valuesn > m’' with {x € £ | alx = b; + m} N P and{x € L | alx = bj + m'} N P
nonempty. Lep,, € {x € L | al x =b; + m} N P andp,y € {x € L | al x =b; + m'} N P.
Then compare the pulling triangulations witly first and withp,, first and the same ordering
of the lattice points in the facet = {x € R? | aiTX = b;} N P. Given a simplex in the
pulling triangulation ofF, the ratio of volumes V@l p,,} U o) /Vol({p,y} Uo) = m/m’ > 1.
Hence the pulling triangulation @f with p,, first could not be unimodular, contradicting the
fact thatP was compressed.

(2) = (3). Now suppose thaP satisfies Condition (2) above. Singtis a lattice
polytope, Condition (2) forces every lattice point ito be a vertex since, given a facet
defining inequalitya” x > b, the largest value: such thatP N {x € R? | a”x = b +m} is
nonempty must have N {x € £ | a’ x = b 4+ m} nonempty, as well as this set must contain
a vertex of P. If there was a lattice point in P which was not a vertex, it is in the relative
interior of some facé” of P of dimension greater than or equal to 1. This pgimould not be
inthe setP N {x € R? | a”x = b 4+ m} (wherem is the unique largest value where this set is
nonempty) for any facet a?, a” x = b which defines a nontrivial facet @ and, in particular,
sincea” p > b, there must be some valug < m suchthatP N{x € £ | a’x = b +m'} is
nonempty.

Now we must show thaP is affinely isomorphic to an integral polytope that is the
intersection of the unit hypercube with an affine subspace. Without loss of generality, we may
suppose thaf does not lie in an affine subspace: if it did, we would make a unimodular
change of coordinates to project to a lowendnsional space. This jfies that in Condition
(2) there is exactly one nonzeng for eachi. Consider the linear transformatian: R —

R given by
X = ((alTX —b1)/ma, ..., (anTX —by)/my) .

The imager (P) is a 0/1 polytope, since every vertex @f is mapped to a (L vector. A
point p lies in 7 (P) if and only if p € C,, and p is in the affine span of the image of the
vertices, because the affine transformatiosends the facet defining inequalttfx > b; to
the inequalityy; > 0. These facts together imply thAtsatisfies Conditiori3).

(3 = (1). If the lattice polytopeP satisfies(3) andrx is the affine transformation,
then P is compressed if and only ® = 7 (P) is compressed, since this transformation maps
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the lattice points inP to the integer points iQ, and P and Q are otherwise isomorphic.
Thus it remains to show that integral polytop@sof the formQ = C, N {x : AX = b}

are compressed. This result is proven in [10, Lemma 2.2]. However, we will provide a short
self-contained proof of it.

Let QO be an integral polytope of the fordi, N {x | Ax = b}. We will show thatQ is
compressed by induction on the dimensionQlhas dimension 0, there is nothing to show.
Otherwise, suppos@ has dimensio@ and consider any ordering of the vertices@f Let
p be the first vertex and construct the pulling triangulation. This is obtained by constructing
the pulling triangulation of each facet ¢f not containingp and coning each of these trian-
gulations ovelp. The normalized volume of each simplex is the orthogonal distance from
to the facet times the volume of corresponding simplex in that facet. However, each facet has
dimensiond —1 and is of the fornC,,N{x | AX =b,x; = 0}orC,N{x | AX = b, x; = 1} for
somei, and hence is compressed by induction. Thus each simplex in the pulling triangulation
of each facet has normalized volume one. Further, the orthogonal distance to the correspond-
ing facetis 1, since; = 1 when the facet is defined by the equatipn= 0. So every simplex
in the pulling triangulation is unimodular. Thsis compressed. |

Many lattice polytopes which arise in applications (in particular, the statistical applica-
tions from Section 5) possess symmetry groups that are transitive on their lattice points. From
the preceding theorem we can deduce that for such polytopes either every pulling triangulation
is unimodular or none are.

COROLLARY 2.5. Supposethat P isa lattice polytope and the group of affine symme-
tries I" of P istransitive on thelattice pointsof P. Then either P iscompressed or no pulling
triangulation of P isunimodular.

PrROOF. We must show that if? is not compressed, then every pulling triangulation
is not unimodular. To this end we can suppose thdtils to satisfy Condition(2) in the
preceding theorem. Then there exists a facet {x € R? | a’x = b} of P and two nonzero
realsm > m’ suchthatx € £ |a’x=b+m'}NPand{x e L |a’x=b+m}N P are
nonempty. Consider any ordering of the verticesadnd the resulting pulling triangulation.
After applying a suitable elemegte I to this ordering, we can assume that the first point
pm in the pulling triangulation is in the s¢k € £ | a’x = b 4+ m} N P. Consider any
other pulling triangulation whiclnas the same order of the pointsfihand a pointp,, in
{x € L|a"x = b+ m'}) N P as the first vertex. Among the simplices in the first pulling
triangulation of P are those of the fornfp,,} U o and in the second pulling triangulation
{pm} U o, whereo is in the induced pulling triangulation af. We see that the ratio of
volumes of these simplices \§p;,} Uo) /Mol ({p,y} Uo) = m/m’ and hence the first pulling
triangulation could not be unimodular. However, this pulling triangulation was arbitrary, so
no pulling triangulation ofP is unimodular. ]

3. Compressed cut polytopes. As an application of our dracterization of com-
pressed polytopes, we describe those graphshose cut polytopes are compressed. We
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assume throughout th&t = (V,,, E) is an undirected graph with verticds = [n] :=
{1,2,...,n} and edge& without loops or multiple edges. ®@definitions and notation come
from [4], and we assume some familiarity with the basic facts about these polytopes.

DEFINITION 3.1. LetS C V,. The cut semimetric o& induced bys is the 0/1 vector
86(S) in RE defined by
86(8)i; =1 it |SN{i,j}I=1, and 55(S);; =0 otherwise
whereij € E. The cut polytope o& is the 0/1 polytope
Cut”(G) = conu86(S)IS C Vy,) .
We will apply Condition (2) from Theorem 2.4 to deduce the following

THEOREM 3.2. The cut polytope Cut”(G) of a graph G is compressed if and only if
G hasno K5 minors and every induced cyclein G haslength less than or egqual to 4.

A cycle in a graph is induced if there is no chord in the graph cutting across it. Equiva-
lently, a cycle is induced if it is an induced subgraph. The proof of the theorem requires a few
intermediate results.

LEMMA 3.3. If Cut?(G) is compressed and H is obtained from G by contracting an
edge, then Cut” (H) is compressed.

PROOF. Let ij be the contracted edge. The polytope ‘Qu) is isomorphic to
Xlx; =01N Cut?(G), and hence is isomorphic to a face of Euf). But every face
of a compressed polytope is compressed. O

LEMMA 3.4. If Cut?(G) is compressed and H is an induced subgraph of G, then
Cut”(H) is compressed.

PROOF. Let E’ C E be the union of all edges i@ not incident toH together with
exactly one edge which is incident & but not contained i/ (provided such an edge exists).
Then Cut'(H) is isomorphic to{x | x, = 0, e € E’} N Cut”(G), and hence is isomorphic to
a face of CUt'(G). But every face of a compressed polytope is compressed. O

LEMMA 3.5. The polytope Cut” (Ks) is not compressed.

PrROOF. One facet defining inequality for Cti¢K's) comes by via the following hyper-
metric construction [4]. Leb = (1, 1, 1, —1, —1) and consider the inequality

Z bibjx;; <0,
1<i<j<5

which defines a facet of CitKs) called a pentagonal facet. To show that ‘€ius) is not
compressed, it suffices to exhibit two s&ts" C Vs such that

D bibjsks(S)ij < Y bibjdks(T)ij <O,

1<i<j<5 1<i<j<5
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since the cut semimetrics are integral points in the cut polytope. Takirg{1, 2, 3} and
T = {1, 2} yields

—6= Y bibjsks(S)ij < Y bibjdks(T)ij =—-2<0. O
1<i<j<5 1<i<j<5
The preceding three Lemmas imply thatné want to identify graphs whose cut poly-
topes are compressed, we may restrict attention to those graphs withouhors. In general,
it remains a hard open problem to give a facet description of the cut polytopes, however, in the
special case of graphs withokit minors, a complete irredundant linear description is known.

THEOREM 3.6. Let G bea graph without K5 minors. Then Cut”(G) is the solution
set of the following linear inequalities:

O<x.,<1 for ecE,

Y oxe— Y xe <|F|-1,

ecF ecC\F
where C ranges over the induced cycles of G and F ranges over the odd subsets of C. Each
of the linear inequalities of the second type is facet defining and the inequalities0 < x, < 1
may or may not be facet defining.

Theorem 3.6 is a consequence of the decomposition theory for binary matroids. It is
proven in [1] and depends on results in [11]. Thus to prove the main theorem in this sec-
tion we just need to determine under what conditions these facet defining inequalities satisfy
Condition(2) from Theorem 2.4. For the inequalities of type<Ox, < 1, these always sat-
isfy Condition (2) regardless of whether or not they are facet defining. Since the structure of
the remaining facet defining inequalities only depends on the induced cycles in the graph it
suffices to prove the following

LEMMA 3.7. LetbeC aninduced cycle of G, and F an odd subset of C. Then the set
{erd er— Z xe=|F|—1—m}ﬂCutD(G)

eclF ecC\F

is nonempty for exactly | |C|/2] — 1 nonzero values of m.

PROOF. Since the value of the linear functioral, . p xe —>_ .\ r xe ONly depends on
the edges i, we can assume thé&t = C. Furthermore, the operation of switching (see [4])
shows that each such facet is equivalent (i.e., up to change of coordinates) to the facet given
by x12 — x23 — - -+ — x1, < 0. So it suffices to prove the Lemma in this setting.

Since cut semimetricd; (S) are the only integral points in CtitG), it suffices to deter-
mine what valuesg (S)12 — 8 (S)23 — - - - — 86 (S)1, can take. Modulo 2, we have

86(8)12—386(S)2z3— -+ — 86 (1 =86(S)12+86(S)23+ -+ +386(S)1, =0 mod 2

S0686(S)12 — 8G(8)23 — - - - — 86(S)1, must be even. Sinck; (S);; is either a zero or a one,
there are at mogtC|/2] — 1 nonzero values that this expression can take. However, for each
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jwith0 < j < ||C|/2] the setS; = {2i | i € [j]} has
86 (Sj)12—386(Sj)23— -+ —86(S))wm =2-2],
which completes the proof. O

4. Compressed polytopesin linear optimization. Compressed polytopes are closely
tied to linear integer optimization problems. In particular, we consider the following setup.
Let A be an integral matrix with columné1, Ao, ..., A,. We assume throughout thatis
homogeneous in the sense that there is a nonzero weight vestarh thatw” A; = 1 for all
i. For each consider the integer programming problem

Maximize x; subject to
AX=b, x>0, xintegral.

For giveni, A andb we denote the optimal value of the integer prograrﬂW(A, b). We
say a vectob is IP-feasible ifb = Ax for some nonnegative integral The corresponding
linear programming relaxation drops the integrality consideration:

Maximize x; subject to
AX=b, x>0.

We denote the optimal value of the linear programming reIaxationBj?(A, b). Since lin-
ear programs are considerably easier to solaa ihteger programs, a fundamental question
in optimization is to decide what conditions guarantee th|t (A, b) = I P, (A, b). Let P4

be the polytope obtained by taking the convex hull of the columns. afhe pulling triangu-
lations of P4 provide a useful sufficient condition to guaranfeB" (A, b) = 1 P;" (A, b).

PROPOSITION 4.1. For fixed Aandi, LP;* (A, b) = I P (A, b) for all IP-feasibleb if
there exists some ordering of the columns of A with A; first such that the pulling triangul ation
of P4 usingonly A1, ..., A, isunimodular.

PROOF. We provide a sketch of the proof which depends on some well-known results
in computational algebra. Details can be found in [13, Chapter 8]. The linear programming
relaxation solves the standard form integer program for all right hand sides associated
intial ideal of the toric ideal 4 is squarefree. The initial ideal is squarefree if and only if the
corresponding regular triangulation Bf is unimodular. In the case where the associated cost
vector is the maximization of the, coordinate, the corresponding triangulation is a pulling
triangulation of P4 with A; first. O

The condition in Proposition 4.1 is not, however, necessatyPjt (A, b) = I P;" (A, b)
for all b, there need not exist a unimodular pulling triangulationPaf with A; first as the
following example illustrates.
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EXAMPLE 4.2. Considerthe matrik given by
111 1 1
A=10 0 1 2 3
1 0 0 0O

This matrix has the property th@tP;" (A, b) = IP; (A, b) for all IP-freasibleb. Indeed,
given an IP feasiblé, every nonnegative vectorwith AX = b hasx; = b3. On the other
hand,P4 has no unimodular pulling triangulations.

This subtlety drops away if we require trﬁan(A, b) = IP,.J“(A, b) for all IP-feasible
b and for all ;.

THEOREM 4.3. Let A be ahomogeneous matrix. Then LP;" (A, b) = I P;* (A, b) for
all i and all IP-feasible b if and only if P4 is compressed.

Recall that in this context wherB4 = convA4, ..., A,) we mean thatP, is com-
pressed with respect to the smallest lattice contaiding . ., A,.

PROOF. If P4 is compressed, then any pulling triangulation withfirst is unimodular,
which implies by Proposition 4.1 that the LP optimums equal the IP optimums. Conversely,
if P4 is not compressed, there is a facet defining inequality that violates Condition (2) in
Theorem 2.4. We will use this violation to construct an IP feaditdach that the LP optimum
for the maximization problem cannot equal the IP optimum.

Denote the violating facet by = {x € R? | a”x = b}. SinceP, is a polytope, there
is a largest real number such thatx € £ | a’x = b + m} is nonempty. We may suppose
thatA; € {(x € £ | a’x = b+ m}. We will partition Ao, ..., A, in the following manner:
aTA; =b+mfori=2,...,k,b<alA; <b+mfori=k+1,...,1,anda” A; = b for
i=Il+1,...,n Let

K=kerz(A)N{yeZ|y1<0,y2<0,....,5% <0, y441>0,y42<0...,y <0}.

Note thatK is nonempty, since there exist affine dependencies amanthe elements
of F N L, andA;1 (there are at least + 2 points in ad dimensional lattice). Furthermore,
any such affine dependency must hayendy,.1 with opposite signs, since neithag nor
Ax41 are contained irf’. Among the vectors ik, letv € K be any such vector withy 41
with the minimal value among all in K. This minimal value is strictly greater than 1. We
define the right-hand side vectbmhich will violate L P;" (A, b) > 1 P, (A, b) by

b= Z Ul'A,' — Ak+1.
ilv;>0

Clearly, b is IP-feasible, since we have expressed it as a nonnegative combination of the
columns ofA.

First of all, we claim thaIPf(A, b) = 0. If not, there is an improving integer vectok
K with such that the vectar™ — e, 1 — U is nonegative and has first coordinate greater than
zero. The existence of suchuaviolates our minimality assumption an1 (Sinceugy1 <
ve+1 — 1). On the other hand, the rational vectoe (vi+1)/(vk+1)v iS an improving vector
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such thab = v+ — ¢;,1 — U is a nonnegative rational vector withv = b andv; > 0 so that
LP; (A, b) > 0. O

5. Applications in statistical disclosure limitation. One motivation for studying
compressed polytopes comes from their relationship to certain optimization problems which
arise in statistical disclosure limitation. The general problem in this area is to determine what
information about individual survey respondents can be inferred from the release of partial
data. This type of problem arises when government agencies like a census bureau gather in-
formation about citizens and wish to release partial data to the public for the purposes of data
analysis but are required by law to maintain the privacy of citizens.

The case we consider here concerns the release of margins of a multiway contingency
table. In this case, an individual cell entry is considered secure if among all nonnegative
integral tables with given released marginal totals the upper and lower bounds on the cell
entry are far enough apart [2, 3]. This naturally leads to standard form integer programs of
the following type:

Maximize/Minimizexg subject to
Axx=b, x>0, and xintegral,

where A 4 is a certain @1 matrix which computes the released marginsf the multiway
tablex. A heuristic for approximating the solution to this integer program is to solve the
linear programming relaxations:

Maximize/Minimizexg subject to
Aax=b and x > 0.

A fundamental problem in this area is to dehine under what conditions the linear program-
ming relaxation is equal to the true integer value. We will focus here on the maximization
problem. To state our results, we first need to establish notation for the contingency table
problems of interest. Heredenotes al; x dz x - -- x d, multiway contingency table. The
particular collection of margins of this tablehieh are released are encoded by a simplicial
complexA on then-element sefn].

Each facef§ € A corresponds to a released margin. Computing a collection of marginals
of a multiway table is a linear transformation. The matrix, represented in the standard basis,
which encodes this linear transformation is denoted hy Note that the size of the matrikx
and problems related to linear programming relaxations depentl amd the integer vector
d = (d1,d>, ..., d,) though we suppress the dependencé arhen we use the notatiofis.

We use the notatio® 4, to denote the convex hull of the columns of the mattix. From the
previous section, we deduce the following basic fact.

COROLLARY 5.1. The linear programming relaxation solves the integer programs
IPJ(AA, b) = LPJ(AA, b) for all marginals b if and only if the marginal polytope P
is compressed.
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PROOF. Because of the transitive symmetry group on the verticésof Pgr (Ap,b) =
LPJ(AA, b) for theO cell entry if and only if this holds for all cell entries. Then by Theorem
4.3 this holds if and only if?4 is compressed. O

Thus we are led to study the following general problem:

PROBLEM 5.2. Characterize the pairs (A, d) of simplicial complexes A and integer
vectorsd = (dy, . . ., d,) such that P, is compressed.

It seems a challenging problem to classifglsumarginals in general, since it would re-
quire the knowledge of many families of facet defining inequalities of the marginal polytopes.
There is very little known about these facet defining inequalities in general. In the remainder
of this section, we provide some constructions for producing compressed marginal polytopes.
As a corollary, we deduce that the marginal polytopes of decomposable models are com-
pressed. We also provide a complete characterization of compressed marginal polytopes in
two restricted cases.

There are a few standard operations on simplicial complexes that send compressed mar-
ginal polytopes to compressed marginal polytopes.

PROPOSITION 5.3. Supposethat the pair (A, d) has P, compressed.

1. If A’ C Aisaninduced subcomplex and d’ the correspond integer vector, then the
pair (A’, d’) has P, compressed.

2. Ifd’ < d coordinatate-wise, thenthepair (A’, d") with A’ = A has P, compressed.

PROOF. In both case®, is isomorphic to a face oP,. However, the faces of com-
pressed polytopes are compressed. m]

PROPOSITION 5.4. Suppose that the pair (A, d) has the marginal polytope P, com-
pressed. Let A’ bethe new simplicial complex on [n + 1] obtained from A by A’ = {{n + 1} U
F|F e Ayandd = (dy,...,d,, dy+1), Where d,, 11 is any positive integer. Then the pair
(A, d") hasa compressed marginal polytope Py:.

PROOF. The marginal polytope , is isomorphic to the direct join af,+1 copies of
P,. Butthe direct join of compressed polytopes is compressed, since any triangulation of the
direct join is obtained by taking the direciijoof the induced triangulations of the pieces. The
direct join of two unimodular triangulations is unimodular. m|

DEFINITION 5.5. A simplicial complexA is called reducible with decomposition
(A1, S, Ap) if

1. AjandA; are induced subcomplexes 4f

2. S C|n],

3. A1UA= A, and

4. A1NAy= 25,
A simplicial complex is calledlecomposableif A is reducible and each af; andA; is either
decomposable or a simplex.
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Given a reducible simplicial complex with decomposition(A1, S, A2) together with
the integer vectod, denote byi! andd? the induced vectors with indices corresponding to
the nodes oA; and Ao, respectively.

PROPOSITION 5.6. If A isreducible and the pairs (A1, d1) and (A», d2) have com-
pressed marginal polytopes, then the marginal polytope P4 is compressed.

PrROOF. For reducible modelg, the marginal polytopes are given by

Py = Pa; X P, N{(X,y) | m1(X) = m2(Y)}

whererr; andr; are theS-marginal maps ot andy, repsectively. In particular, the set of facet
defining inequalities oP, is just the union of the facet defining &1, and Pa,. SincePx,

and P,, are compressed, these facet defining inequalites satisfy Condition (2) of Theorem
2.4. But this implies that they also satisfy Condition (2) of Theorem 2.4 with respétt &s

well. This implies thatP, is compressed. O

COROLLARY 5.7. If Aisdecomposablethen P, iscompressed.

PROOF. If A = 2"l then P, is a simplex. Thus, ifA is decomposableP, is com-
pressed by applying Proposition 5.6 and induction on the number of facets of a

The preceding propositions provide methods for producing compressed marginal poly-
topes from smaller compressed marginal polytopes. However, these results are far from giv-
ing a complete characterization of all paies, d) such that the marginal polytopes are com-
pressed. In the remainder of this section, we provide characterizations of compressed marginal
polytopes in two settings where we place “extremal” conditiongipor d or both.

PROPOSITION 5.8. Let A betheboundary of ann—1 simplex. Then P, iscompressed
if and only if for at most two i, d; > 2 or n = 3 and up to symmetry d = (3, 3, d3).

PROOF. Inthe case where for at most twal; > 2, itis known thatP, is a unimodular
polytope (e.g., [13, Chapter 14]) and hence is compressed. The casemvheBeandd =
(3, 3, d3), the complete facet description of this pupe is known (e.g., [6]) and one verifies
that the facet defining inequalities in this cas¢éisfy Condition (2) of Theorem 2.4. Direct
computation using Polymake [7] shows that Condition (2) of Theorem 2.4 fails in the case
n=3,d=(3,4,4) andn = 4,d = (2, 3, 3, 3). These results together with Proposition 5.3
imply that P4 is compressed in no other cases. O

The cut polytopes from Section 3 are intimately tied to the marginal polytopes we are
interested in, in the special case where= (2,2, ...,2) and all facets ofA are 0 or 1-
dimensional. In this casé is a graph and we have the following well-known result (see
[4]):

LEMMA 5.9. Givenagraph A andd = (2,2, ..., 2), thereis a lattice isomorphism
of the marginal polytope P, to the cut polytope Cut” (A), where A isthe graph obtained from
A by adding a new vertex v and all edges from v to the nodes of A.
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The lattice isomorphism in the preceding Lemma is known as the covariance mapping.
Then we can deduce:

THEOREM 5.10. Let Abeagraphandd = (2,2,...,2). Then P, iscompressed if
and only if A isfree of K4 minorsand every induced cyclein A haslength less than or equal
to 4.

PROOF. The graphA is free of Ks minors and has all induced cycles of length less
than or equal to four if and only ift has noK4 minors and all induced cycles of length less
than or equal to four. Thus, this is a direct consequence of Theorem 3.2 characterizing the
compressed cut polytopes. m]

In these cases we can in fact say more: even though the size of the integer program
seems exponential inthe number of nodes in the simplicial complex, in the case wikare
is compressed we can solve the corresponding linear program (and hence the integer program)
in polynomial time.

COROLLARY 5.11. Supposethatd = (2,2, ...,2)and Aisagraphthatisfreeof K4
minors and has every induced cycle of length less than or equal to four. Then the I P-maximum
value 1 Pf (A, b) can be computed in polynomial time in n and the bit complexity of b.

PROOF. Sincel P;" (A, b) = LP;* (A, b) for these graphs, it suffices to show that the
linear program can be solved in polynomial time. However, the problem of maximizing a
coordinate is polynomial time equivalent to determining if a point lie®Pin For graphs
without K4 minors, the containment problem can be decided in polynomial time as illustrated
in [4]. a

In general, we would like to understand how far the linear programming relaxations can
be from the true integer programming values for these optimization problems in statistical
disclosure limitation. This leads to the study of the integer programming gap [9]. A natural
question to ask is: How does the failure of Condition (2) in Theorem 2.4 relate to the integer
programming gap? A natural family of marginal polytopes where this problem could be
explored is the family of cycles.
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