Journal of Differential Geometry

Analytic and topological torsion for manifolds with boundary and symmetry

Wolfgang Lück

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 37, Number 2 (1993), 263-322.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214453679

Digital Object Identifier
doi:10.4310/jdg/1214453679

Mathematical Reviews number (MathSciNet)
MR1205447

Zentralblatt MATH identifier
0792.53025

Subjects
Primary: 57S17: Finite transformation groups
Secondary: 57Q10: Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [See also 19B28] 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX] 58G26

Citation

Lück, Wolfgang. Analytic and topological torsion for manifolds with boundary and symmetry. J. Differential Geom. 37 (1993), no. 2, 263--322. doi:10.4310/jdg/1214453679. https://projecteuclid.org/euclid.jdg/1214453679


Export citation

References

  • [1] M. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43-69.
  • [2] M. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405-432.
  • [3] M. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ill, Math. Proc.Cambridge Philos. Soc. 79 (1975) 71-99.
  • [4] J. M. Bismut and D. S. Freed, The analysis of elliptic families: metrics and connections on determinant bundle, Comm. Math. Phys. 106 (1986) 159-176.
  • [5] J. M. Bismut and D. S. Freed, The analysis of elliptic families'. Dirac operators eta invariants and the holonomy theorem of Witten, Comm. Math. Phys. 107 (1986) 103-163.
  • [6] G. Bredon, Introductionto compact transformation groups, Academic Press, New York, 1972.
  • [7] S. Cappell and J. L. Shaneson, Non-linear similarity, Ann. of Math. (2) 113 (1981) 315-355.
  • [8] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979) 259-322.
  • [9] M. M. Cohen, A course in simple homotopy theory, Graduate Texts in Math., Vol. 10, Springer, Berlin, 1973.
  • [10] F. Connolly and W. Luck, The involution on the equivariant Whitehead group, J. Mheory 3 (1990) 123-140.
  • [11] K. H. Dovermann and M. Rothenberg, An algebraic approach to the generalized Whitehead group, Transformation Groups (Proc, Pozna 1985), Lecture Notes in Math., Vol. 1217, Springer, Berlin, 1986, 92-114.
  • [12] K. H. Dovermann and M. Rothenberg, An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification, Mem. Amer. Math. Soc. No. 389 (1988).
  • [13] W. Franz, Uber die Torsion einer Uberdeckung, J. Reine Angew. Math. 173 (1935) 245-254.
  • [14] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 91 (1986) 31-51.
  • [15] P. B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish, Boston, 1984.
  • [16] W. C. Hsiang and W. Pardon, When are topologically equivalent orthogonal representations linearly equivalent, Invent. Math. 38 (1982) 275-317.
  • [17] S. Illman, Whitehead torsion and group actions, Ann. Acad. Sci. Fenn. Ser. A I Math. 588 (1974) 1-44.
  • [18] S. Illman, Smooth equivariant triangulationsof G-manifolds for G a finite group, Math. Ann. 233 (1978) 199-220.
  • [19] J. Lott and M. Rothenberg, Analytic torsion for group actions, J. Differential Geometry 34 (1991) 431-481.
  • [20] W. Luck, The geometric finiteness obstruction, Proc. London Math. Soc. (3) 54 (1987) 367-384.
  • [21] W. Luck, Transformation groups and algebraic K-theory, Lecture Notes in Math., Vol. 1408, Springer, Berlin, 1989.
  • [22] W. Luck and I Madsen, Equivariant L-theory. I, Math. Z. 203 (1990) 503-526.
  • [23] W. Luck and I Madsen, Equivariant L-theory. II, Math. Z. 204 (1990) 253-268.
  • [24] I. Madsen and M. Rothenberg, On the classification of G-spheres I: Equivariant transversality, Acta Math. 160 (1988) 65-104.
  • [25] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358-426.
  • [26] W. Mller, Analytic torsion and R-torsion of Riemannian manifolds, Advances in Math. 28 (1978) 233-305.
  • [27] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Functional Anal. Appl. 19 (1986), 31-35.
  • [28] D. B. Ray, Reidemeister torsion and the Laplacian on lens spaces, Advances in Math. 4 (1970) 109-126.
  • [29] D. B. Ray and I. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145-210.
  • [30] G. deRham, Reidemeister's torsion invariant and rotations of Sn, Differential Analysis (published for the Tata Institute of Federal Research, Bombay), Oxford University Press, London, 1964, 27-36.
  • [31] M. Rothenberg, Torsion invariants and finite transformation groups, Algebraic and Geometric Topology, part 1, Proc. Sympos. Pure Math., Vol. 33, Amer. Math. Soc, Providence, RI, 1978, 267-311.
  • [32] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247.
  • [33] J. R. Silvester, Introduction to algebraic K-theory, Chapman and Hall, 1981.
  • [34] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford University Press, 1951.
  • [35] E. Witten, Quantum field theory and the Jones polynomial, preprint, 1988.