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ANALYTIC AND TOPOLOGICAL TORSION FOR
MANIFOLDS WITH BOUNDARY AND SYMMETRY

WOLFGANG LUCK

0. Introduction

Let G be a finite group acting on a Riemannian manifold M by isome-
tries. We introduce analytic torsion

PL-torsion

Poincare torsion

and Euler characteristic

p°ά(M,Mι;V)eKι(RG)Z/\

χG(M,Mι V)eRepR(G)

for dM the disjoint union of Mχ and M2 and V an equivariant coeffi-
cient system. The analytic torsion is defined in terms of the spectrum of
the Laplace operator, the PL-torsion is based on the cellular chain com-
plex, and Poincare torsion measures the failure of equivariant Poincare
duality in the PL-setting, which does hold in the analytic context. De-
note by RepR(G) the subgroup of RepR(G) generated by the irreducible
representations of real or complex type. We define an isomorphism

Γ, θ Γ2: KX (RG)Z/2 -> (R ® z RepR(G)) θ (Z/2 ® z RepR(G))

and show under mild conditions that

X;V) = Γχ(p°(M, Mχ
, MX;V) = Γχ(p°(M, Mχ;V))-l- Γ{(p^(M, M{ V))

and
Γ2{p°(M, Mι V)) = T2(p%(M, Mx V)) = 0.
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For trivial G this reduces to the following equation in R :

/>an(M, Mχ V) = ln(ppl(M, Mχ V)) + ^ • *(flM) dimR V.

Torsion invariants are important invariants which relate topology to
algebraic ΛΓ-theory and hence to number theory (see Milnor [25]). The s-
Cobordism Theorem and the classification of lens spaces are important ex-
amples. Motivated by fruitful connections between topology and analysis,
e.g., the Atiyah-Singer Index Formula, Ray and Singer [29] asked whether
(Reidemeister) PL-torsion can be interpreted analytically, namely, by the
spectral theory of the Laplace operator. They defined analytic torsion and
gave some evidence for the conjecture that analytic and PL-torsion agree.
This was independently proved by Cheeger [8] and Miiller [26]. Analytic
torsion is used and investigated in various contexts (see, e.g., Bismut and
Freed [4], [5], Fried [14], Quillen [27], Schwarz [32], and Witten [35]).

The PL-torsion is powerful as it is a very fine invariant, and there are
good tools like sum and product formulas for its computation. In par-
ticular, one can chop a manifold into "elementary" pieces, determine the
PL-torsion of the pieces, and use a sum formula to compute the PL-torsion
of M. Notice that these pieces have boundaries even if M is closed. In
order also to get a sum formula for analytic torsion, it is necessary to in-
vestigate the relation between analytic and PL-torsions also for manifolds
with boundary. Inspecting the proofs of Cheeger [8] and Muller [26] one
recognizes that they do not extend to the case where M has a boundary.
Moreover, an easy calculation for D shows that their result is not true
for Dx. Now the key observation due to Cheeger (see [8, p. 320]) is that
the equivariant spectrum of the Laplace operator on M UdM M with the
Z/2-action given by the flip and the spectrum of the Laplace operator on
M for both Dirichlet and Neumann boundary conditions determine one
another. Hence the problem of comparing analytic torsion and PL-torsion
for manifolds with boundary can be reduced to the case of a closed man-
ifold with a Z/2-action. Notice that the flip on M UdM M reverses the
orientation. Inspecting the proof of Muller [26] again it turns out that his
methods carry over to closed orientable Riemannian (/-manifolds with
orientation preserving and isometric G-action for a finite group G. This
is carried out in Lott and Rothenberg [19], and we will exploit their work.
However, we will use a different setting which seems to be more appro-
priate for our purposes here and for more general situations (mainly an
L -version for proper actions of infinite groups on noncompact manifolds
which we will treat in forthcoming papers).
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Let (M,Mι,M2) be an ra-dimensional (compact) Riemannian G-
manifold triad (with G acting by isometries). There is a canonical group
extension

0 -> π{(M) Λ DG{M) i β ^ O

and a DG(M)-action on the universal covering M extending the action of
the fundamental group and covering the G-action. Consider an equivari-
ant coefficient system V, i.e., an orthogonal representation of DG(M).
Such a V may be thought of as an equivariant flat G-vector bundle over
M or as an equivariant flat connection. We want to allow a twisting of our
invariants by such equivariant coefficient systems because analytic torsion
is important for the study of moduli spaces of flat connections (see, e.g.,
Quillen [27], Witten [35]). Put certain boundary conditions of Dirichlet
type on Mχ and of Neumann type on M2 . Then the Laplace operator
Δp is elliptic, selfadjoint, and nonnegative definite and is compatible with
the G-action. The eigenspace EG(M, Mχ V)p of Ap for the eigenvalue
λ is a real G-representation. We define the equivariant zeta-function by
meromorphic extension of

ζG(M, Mχ V)(s) = Σλ~S- lEϊ(M> Mι' v?l e CΘzRepR(G).
λ>0

It is analytic in zero and we define analytic torsion in § 1 by

pG

n(M, Mχ V) = f > l ) * .p. ^ ( M , Mχ V)\s=0 e R Θ z R e p R ( G ) .

For G = 1 this agrees up to a factor 2 with the definition of Ray and
Singer [29].

A finite RG-Hilbert complex C is a finite-dimensional finitely generated
RG-chain complex C together with a R-Hilbert structure compatible with
the G-action on each Cn . Given a RG-chain equivalence / : C -» D, we
define in §2 its Hilbert torsion

Let C be a finite RG-Hilbert complex. Then its homology H(C) has
the structure of a finite RG-Hilbert complex with respect to the trivial
differential. There is an RG-chain map i: H(C) -> C uniquely deter-
mined up to RG-chain homotopy by the property H(i) = id. Define the
Hilbert-Reidemeister torsion of C as
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If G is trivial, then hr(C) is the square of Milnor's torsion defined for C,
and H(C) equipped with any orthonormal bases. There is also a cochain
version.

Using the Hodge decomposition theorem and the cellular bases we get
RG-Hilbert structures on H^M, Mχ V) and C^(M, Mχ V). We define
the PL-torsion as

p°(M, Mχ V) = hr(C+(M, Mχ V)) 6 Kχ(RG)Z/2.

Let Γ\[M]: Cm~*{M, Mχ\
wV) -> C+{M, Mχ\ V) be the Poincarέ RG-

chain equivalence; its Hubert torsion is the Poincarέ torsion

p°ά(M,Mχ;V)eR®zRepR(G).

This invariant is always zero for trivial G. This follows from the proof of
Poincare duality based on the dual cell decomposition of a triangulation.
In the equivariant case the dual cell structure is not compatible with the fr-
action, and ppά(M, Mχ V) measures the failure. The equivariant Euler
characteristic is defined by

m

χG{M, MX;V) = £ ( - l ) P [HP(M, Mχ V)] e RepR(<7).

We will assume the technical condition that the equivariant coefficient
system V is coherent to a (/-representation. This is always satisfied if G
is trivial or MH is nonempty and connected for all H c G. Now we can
state the main result of this paper.

Theorem 4.5 (Torsion formula for manifolds with boundary and symme-
try). Let M be a Riemannian G-manifold whose boundary is the disjoint
union MχY[M2. Let V be an equivariant coefficient system which is co-
herent to a G-representation. Assume that the metric is a product near the
boundary. Then

p°n(M, Mχ;V) = Γχ(p°χ(M, Mχ;V))-y Γχ(p°ά(M, Mχ V))

If G is trivial, this reduces to the following equation of real numbers:

/>an(M, Mχ V) = ln(ppX(M, Mx;V)) + l^l- χ{dM). dimR V.

Cheeger states in [8, p. 320] without proof a formula relating analytic
and PL-torsions for a manifold with boundary (without group action).
His formulas are not as precise as ours since Cheeger claims only that the
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correction term can be computed locally at the boundary, whereas we can
identify it with the Euler characteristic.

The proof of the main theorem is organized as follows. In §§1,2, and 3
we present product and double formulas and Poincare duality. We inves-
tigate how these invariants depend on the Riemannian metric and relate
PL-torsion to the equivariant Whitehead torsion of a G-homotopy equiv-
alence. Then Theorem 4.5 is verified in §4 as follows. We first give the
proof under the extra conditions (i) M is orientable, (ii) G is orienta-
tion preserving, and (iii) dM is empty. If dim(Λf) is even, the assertion
follows from Poincare duality. The Poincare duality formulas for analytic
and PL-torsion differ only by the Poincare torsion. This is the reason for
the appearance of Poincare torsion in the formula relating analytic and
PL-torsions. If dim(M) is odd, we reduce the claim to the case of trivial
coefficients V = R and then apply Lott-Rothenberg [19]. We remove con-
dition (iii) by the various product formulas and explicit calculations for Sι

with the involution given by complex conjugation. We get rid of (i) using
the orientation covering. Finally we remove (iii) by the double formula
which relates the invariants for the {G x Z/2)-manifold M\JdM M to the
invariants of the G-manifolds (M, 0) and (M,dM). The double for-
mulas for the analytic torsion and the PL-torsion differ by a certain Euler
characteristic term of the boundary, since in the analytic case the boundary
is a zero set and does not affect the RG-Hilbert structure whereas in the
PL-case the cells of the boundary do contribute to the R(?-Hilbert struc-
ture. This difference in the double formulas causes the Euler characteristic
term in the formula of the theorem above. The appearance of a correc-
tion term in the case of a manifold with boundary is not very surprising
if one thinks of the index formula for manifolds with boundary where the
A/-invariant comes in (see Atiyah-Patodi-Singer [l]-[3]).

In §5 we investigate some special cases. We derive from the sum formula
in the PL-case a sum formula for the analytic torsion. This is remarkable
because it is in general difficult to derive the spectrum of the Laplace
operator on M Όf N for an isometric diffeomorphism f:dM->dN
from the spectra of its restrictions to M, N, and dM. We express the
various torsion invariants for spheres and disks of (/-representations in
terms of their characters. We construct an injective homomorphism based
on Poincare torsion:

pi: RepR((7)
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This reproves the theorem of de Rham that two orthogonal G-representa-
tions V and W are linearly RG-isomorphic if and only if their unit
spheres SV and SW are (j-diffeomorphic. We use the sum formula
for Poincare torsion to establish a local formula for Poincare torsion. It
computes the Poincare torsion of M in terms of the Poincare torsion of
the tangent representations of points with nontrivial isotropy group and
the universal equivariant Euler characteristic of M.

The author wants to thank the Deutsche Forschungsgemeinschaft for
financial support and the Department of Mathematics of The University of
Chicago for their hospitality during his stay from October 1988 to March
1989 and in February 1990, when this paper was worked out. In particular,
the discussions with Professor Rothenberg were very fruitful.

1. Analytic torsion

Let G be a finite group. A Riemannian (/-manifold M is a compact
smooth manifold with differentiable G-action and invariant Riemannian
metric. If dM is the disjoint union of Mχ and M2, we want to define
the analytic torsion of (M, Mχ) with certain coefficients V. We begin
with explaining the coefficients.

Let X be a G-space with universal covering p: X —• X. The group
of covering translations is denoted by A(p). Let DG(p) be the discrete
group

(1.1) DG(p):={(f,g)\f:X^X, geG, pof=l(g)op},

where l(g): X —• X is multiplication with g. There is an obvious exact
sequence

(1.2) O-+A{p)WD

G

{p)<tWG^o

and an operation of D (p) on X (both natural in p) making the follow-
ing diagram commute:

A(p) x X > X

|i(p)xid lid

(1.3) DG(p)xX > X

\q(p)χp \P

GxX > X

In the sequel we identify A(p) with π = nx{X) and write DG{X) in-

stead of D (p). The coefficients will be orthogonal D (X)-representations.
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Let M be a Riemannian G-manifold of dimension m. Define the
orientation homomorphism

(1.4) wG(M):DG(M)-+{±l}

as follows. For some base point x e M an element (f,g)e DG(M) is

given by a homotopy class of paths w from x to gx. The composi-

tion of the fiber transport of the tangent bundle TM along w and the

differential of l(g~ ) at gx give an isotopy class of automorphisms of

TMχ . If it is orientation preserving, resp. reversing, we set w (M)(f, g)

equal to, resp. -A . An equivalent definition uses the observation that

/ίm(HomZ π(C s | t(M), Zπ)) is an infinite cyclic group by Poincare duality

and / induces a homomorphism f^\ π -> π , a Z[/J-equivariant map

C^(f): C^(M) —• C^(M)9 and hence an automorphism of this infinite

cyclic group by 77m(HomZ π(C+(/), ZL/71]]). Then wG(M)(f, g) is its

degree.

If F is a DG(M)-representation, let WV be the w = wG(Λ/)-twisted

DG(M)-representation given by tι (e) eυ for e e DG(M) and v e V.

The vector bundle M xπ V over M becomes a G-vector bundle by

£(jc, υ) = (Jc£ - 1 , £v) for any lift g G DG(M) of ^ e G. The deRham

complex Λ*(M; F) of differential forms with coefficients in MxπV is an

RG-cochain complex. A choice of a local orientation on TMk for some

x e M together with the Riemannian metric determines a volume form

dM £ Kn(M\ WR). Using the inner product on V we get the product

Λ: AP(M ;V)®Aq(M;wV)-> Ap+q(M WR). The Hodge star operator

(1.5) *: AP{M; V) -> Am~p{M\ WV)

is defined by ω Λ (*η) = (ω, η) dM, where ( , ) is induced from

the Riemannian metric. Since dM is G-invariant, the map * is RG-

linear. The Riemannian metric induces an inner product on AP(M\ V)

by ((ω, η)) := fM{ω, η)dM. Then * is an isometry satisfying * o * =

( - l ^ - ^ i d . The adjoint δp: AP{M; V) -+ AP~\M\ V) of the differ-

ential dp is (-l)mp+p+ι*dm~p*. Define the Laplace operator

(1.6) AP:AP(M; V) -> AP{M\ V)

b y dP~lδP

Let M be a Riemannian G-manifold whose boundary dM is the dis-
joint union Mχ\JM2. We allow that M{ or M2 or both are empty.
Consider an orthogonal /^(Λf ̂ representation V . Given a p-form ω e
AP{M\ V), let ω t a n be the p-form on 9 M coming from restriction with
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77: TdM -> TM for the inclusion /. Let ωnoτ be the (p - l)-form
^ consider the boundary conditions

(1.7) b(M,Mί):ωUn = 0, (δω)Uaι = 0 on Mχ,

ω n o r = 0, (dω)noI = 0 onM2.

In the sequel we write

AP(M, Mj F) = {ω e AP(M; V) | ω t a n = 0 on M{

and ω n o r = 0 on M 2 },

(1.8) AP

2(M,M{', V) = {ωeAp(M; V) \ ω satisfies b (M, M{)},

L P ' , V) |Δω = 0,

ω satisfies b(M, Mχ)}.

The space Hζ^J^M, Λ/t K) is called Λpαce of harmonic forms. Denote
by

(1.9) A(M; V): A*(M; V) -• C5*(M; F)

the V-twisted deRham map which is the composition

Λ*(M; F) = A * ( ¥ ; I x s V)CA*(M;MX V)π C- (Λ*(Af) ΘR F)π

) ΘR F)π ^HomR(C:(M), F)π

R Λ , F) =: c;(Λ/; F).

Here C*(Af) is the singular chain complex. The map p* is induced from

the projection p: MxV -> MxπV. The isomorphism j : Λ*(Af) <8>R V —•

Λ*(Λί MxV) sends s<g>t;, given by a section 5 of APT*M and υ e V ,

to the section x H-> 5(X) 0 1 ; . We denote by A{M) the ordinary deRham

map sending a p-form ω to the singular cosimplex σ ι-+ fσ*ω. The

isomorphism Φ maps (/> <g> ?; to the R-map C*(Aί) -^ F , σ ^ 0(σ)f.

We denote by L2AP{M\ V) the Hubert completion of AP{M\ V) un-
der the inner product {(ω, /̂)> := fMω Λ*η. For later purposes we state
the following result whose proof can be found in Miiller [26, p. 239].

Theorem 1.10 (Hodge-decomposition theorem), (a) Hζaτm(M, M{ V)
= ker(rf) Π ker(<?) n Ap(M, M{ V).

(b) The R-modules ker(Δ)nΛ^(M, Λ/j F) α«ί/ HζarJM, Mj F)
finitely generated.
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(c) We have the orthogonal decompositions

AP(M, Mχ;V) = < a r m ( M , Mχ F) φ d(Ap~l(M, Mχ V))

L2AP(M, Mχ V) = < a r m ( M , M, F) θ clos(</(Λf l(M, Mχ F)))

^ ; F))).

(d) Theinclusion i: Hζarm(M, Mχ F) - ker(rf)nΛ^(M, Mχ F) com-
with α deRhαm map has image contained in the space ofcocycles in

CP(M, Mχ\ V). We obtain an isomorphism

The Laplace operator Δp: λp

2(M; V) -> AP

2(M\ V) is an elliptic self-
adjoint differential operator, whose spectrum is a pure point spectrum
consisting of nonnegative real numbers. For λ > 0 we put

(1.11) EG

λ{M,Mχ\ V)p = {ωeAP

2(M; V)\Apω = λω}.

Since G acts on (M, Mχ) by isometries, Δ is compatible with the RG-

structure. Since Ef(M, Mχ V)p is finitely generated, it defines an ele-

ment in the real representation ring RepR(G). We define the equivariant

zeta-function

, Mχ V)(s) = Σλ~S lEϊ(M> Mι: F)P1 € C Θz RepR(G),

(1.12)
CG(M, Mχ F) = ̂ ( - l ) p ./7 ^(Λ/ f MI V)

for 5 G C with Real(5) > dim(Λf)/2. Because RepR(G) is a finitely
generated free abelian group with the isomorphism classes of irreducible
representations as base, we may identify C <8>z RepR(G) with Cr for r =
rk z(RepR(G)). Hence it makes sense to speak of convergence in C <8>z

RepR(G). Restriction to the trivial subgroup defines a homomorphism
res: C(g>zRepR(G) - C® zRepR({l}) = C. The image of ζG

p{M, Mχ V)
under this map is just the nonequivariant zeta-function which converges
absolutely for Real(s) > dim(M)/2 (see Gilkey [15, p. 79]). This implies
that ζp(M, Mχ V) converges absolutely for Real(j) > dim(Λ/)/2.

Lemma 1.13. The equivariant zeta-function ζp(M, Mχ V) has a mero-
morphic extension to C. It is analytic in zero, and its derivative at zero
lies in R ® z RepR(G).
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We defer the proof of Lemma 1.13 to §4.
Definition 1.14. The analytic torsion

is defined by /£(M, Mχ V) = Σ%(~ι)P 'P ' ίfi(M> Mx \ F ) U
Example 1.15. Fix a positive real number μ. Equip R with the stan-

dard metric and the unit circle Sι with the Riemannian metric for which

R -> Sι, / H exp(2π iμ~ιt) is isometric. Then Sι has volume μ. Let

Z/2 act on Sι by complex conjugation. The Laplace operator Δ 1 : Λ*R ->

Λ !R maps f{t)dt to -f'{t)dt. By checking the μ-periodic solutions of

= -λf{t) one shows that Δ1 on S 1 has eigenspaces Eλ(S1)1 =
1sρanR(/w rfί, gndt) for A = {2πμ~ιnf , n > 1, ^ ( S ' 1 ) 1 = spanR(^0 for

A = 0, and ^ ( S 1 ) = {0} otherwise, if fn(exp(2πiμ~ιή) = cos(2πμ~ιnt)

and gn{exp(2πiμ~ιt)) = sin(2πμ~1/i/). The Z/2-action on S 1 induces

the Z/2-actionon E{2πμ-ln)2(Sι) sending fn to fn and grt to -gn. De-

note the Riemannian zeta-function by CRieW = Σ Π >i Λ~S Let R be the

trivial and R~ be the nontrivial one-dimensional Z/2-representation. We

get

Cf / 2(5 ! R) = ( y ) ^ CRie(2^) • ([R] + [R-]).

Since ζψe{0) = -\ and ^ i e ( 0 ) = -ln(2π)/2 hold (see Titchmarsh [34]),
we obtain

(1.16) PH\S1 R) = ]n(μ) ([R] + [R"1]).

By restriction to the trivial subgroup we derive

(1.17) pΛn(Sl;R) = 2

Example 1.18. Equip D = [ 0 , 1 ] with the standard metric scaled by

μ > 0. The volume form is then μ dt. The Laplace operator Δ 1 : ΛιD —•

Λ V maps f(ήdt to μ~2 -f"(t)dt. We get

Eλ(D R) = spanR(sin(π«ί) dt),

Eλ(Dl, ΘDl R) = s p a n R ( c o s ( π « 0 ^ ) for λ = ( - n ) 2 , neZ, n > 1,

and ^ ( D 1 R) = Eχ{Dι, a/) 1 R) = {0} otherwise. Hence we get

ζ{(Dl R) = ζ χ ( D ι 1 ( ^ ) '
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which implies

(1.19) pan(Dl, R) = pjp1, 3D1 R) = ln(2μ).

Proposition 2.10 (Poincare duality for analytic torsion). Let M be an
m-dίmensional Riemannian G-manifold with orientation homomorphism
w = wG(M). If V is an orthogonal DG {M)-representation and dM the
disjoint union Mχ ]J M2, we have

Proof. Recall EG

λ{M, Mχ Vf = {ω e AP

2{M, M{ V) |Δω = λω)
and A"2(M, Mχ V) = {ω € ΛP(Λ/; F) |ω satisfies b(M, M{)}, where
the boundary conditions b{M, Λ/,) were defined in (1.7). Put

E[{M, Mχ Vf := {ω € AP
2(M, Mχ V) \ dδω = λω}

and

E"χ(M, Mχ Vf := {ω e AP

2(M, Mχ ;V)\δdω = λω}.

For λ Φ 0 we obtain an orthogonal RG-sum decomposition

λ~xdδ®λ~xδd:

EG

λ(M, Mχ Vf -» £;(Λ/, M, F)p φE"χ{M, Mχ F) p

and inverse isometric RG-isomorphisms

λ~1/2d : E"(M, M, Vf

The Hodge star operator * induces an isometric RG-isomorphism

(1.23) *: EG

χ{M, Mχ V)" - EG{M, M2;
wV)m-p.
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Now the following computation finishes the proof:

m

(M9 Mχ V) = 2 ^ 2 ^ ( ~ ^ ^ ϊ^λ ( ^ ' ^ i ; ^) J
p=0λ>0

f M2;
p=0 A>0

p=0 λ>0

[Ef(M,M2;
wV)m-p]

p=0 λ>0

ΛEG

λ{M,M2;
wV)m-p]

p=0 λ>0

-\[E'{M M V)p+l) + [E[{M M V)p\λ-\[E'λ{M, Mι V)p+l) + [E[{M, Mχ V)p\)

(-l)m+lζG(M,M2;
wV). q.e.d.

Suppose that M is orientable and closed, its dimension m is even, and
G is orientation preserving. As w is trivial, we get /?an(Λf F) = 0.

Remark 1.24. We often put the condition on the Riemannian metric
that it is a product near the boundary, i.e., there is an equivariant collar
/ : dM x [0, 1[ onto an invariant neighborhood of the boundary such that
/ is isometric if we equip dM c M and U c M with the induced metric,
[0, 1[ with the standard metric, and dM x [0, 1[ with the product met-
ric. This condition ensures that for two such Riemannian G-manifolds
M and N and an isometric G-diffeomorphism / : M{ —• Nχ between
open and closed submanifolds Mχ c dM and Nχ c dN there is the
structure of a Riemannian G-manifold on Mu^ N such that the obvious
inclusions iM: M -> M Uy N and iN: N -> M Uj N are isometric G-

imbeddings. Let V, resp. W, be an orthogonal DG(M)-, resp. DG(N)-,
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representation. We denote by j M : Mχ -> M and j N : Nχ -+ N the in-

clusions. Fix an orthogonal /^(M^-isomorphism / : j*MV —• f*j*NW.

Then there is an orthogonal DG(M Uy iV)-representation V Uj W such

that j*M{Vuf W) and V, resp. j*N{V Uf W) and W, agree. If G is

trivial and Mχ is connected, this follows from the theorem of Seifert-van

Kampen. In the general case one must apply a generalized version say-

ing that the corresponding diagram of fundamental categories in the sense

of [21] is a push out of categories. Alternatively, one may think of the

representations as (/-vector bundles and glue them together.

In particular, we can choose / = id and / = id and consider M UM M

and V UM V. There is a canonical Z/2-structure on M UM M obtained

by switching the two copies of M. Hence we can consider M \JM M

as a Riemannian (G x Z/2)-manifold. The Z/2-structure induces a Z/2-

action on DG(MUM M) and DGxZ/2(MUM M) is the semidirect product

DG(M UM M) xs Z/2, provided that Mχ is not empty. The orientation

homomorphism wGxZ/2(MUMι M) maps (w, ±1) e DGxZ/2(M \JM M)

to ±1 wG(M UM M)(u). One can extend V UM V to an ortho-

gonal DGxZ^2(M UM M)-representation by (w, ±1) v = u v for u e

DG(Ml)M M) and v e V, since u and ( - I ) M E DG(M\JM M) for

±1 e Z/2 operate on V \JM V in the same way.

The following result will allow us to reduce the case of a manifold with
boundary to the closed one. We have the isomorphism

(1 25) (R(8) zRepR(G))(g) zRepR(i/)^R(g) zRepR(G ίx/ίΓ),

( A [ / η ) & [ β ] A [ P β ]

For later purposes we mention the pairing obtained from (1.25) for
G = H, also denoted by <8>R, and restriction to the diagonal:

(1.26) (R ® z RepR(G)) ® z RepR(G) ?* R ® z RepR(G).

For the next result put H = Z/2 in (1.25).
Proposition 1.27 (Double formula for analytic torsion). Let M be a

Riemannian G-manifold such that the Riemannian metric is a product near
the boundary. Suppose that dM is the disjoint union of Mχ and M2. Let
V be an orthogonal D (M)-representation. Then the following equalities
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hold:

fZ/2 )p = (E^(M; V)p
(a) E"^'*(MUM M;VUM V)μ = (ET(M; V)μ ®RR)

φ(E^(M,Mχ\ V)p 0 R R"

(c) / x Z / 2 ( ¥ U ¥ Aί; F U M V) = (p°(M; V) ΘR [R])

Obviously (b) and (c) follow from (a). Let τ: M UM M

M Λ/ be the flip map. Define

(1.28)1

= {ωeEfxZ/2(MuM M\ VUM V)p\τ*ω =

= {ωe EfxZ/2{M UM M V \JM V)p \ τω = -ω}.

Let /: M -+ M \3M M be the inclusion onto the first summand. Ob-
1

viously Γ is compatible with d, *, δ, and Δ. Since τ is an isometry
and reverses the local orientation at points in Mχ, the induced map τ*
maps the volume form d(M UM M) to -d(M UM M). This implies
τ* o * = - * oτ*. As τ is the identity on Mχ, we get (/*τ*ω)tan = (**ω)tan

on Mχ. Hence Cω satisfies the boundary conditions b(M, 0) (resp.
b(M, Mχ)) (see 1.7), if τ*ω = ω (resp. τ*ω = -ω) holds. Thus we can
define RG-maps
(1.29)

fxZ/2 M\ F ϋ M i V)\->EG

λ{M\ V), ω~i*ω,

Γ: EfxZ/2(M UMiM;V u ^ K)^ - . £f (M, Af! K)p, ω ^ /*ω.

Obviously i'+ is injective, as i*ω determines ω because of τ*ω = ω.

Next we show that ι+ is surjective. Given ω e Ef(M; V), there is only

one candidate as preimage, namely coUM ω. The problem is that ωUM ω

is smooth on {MuM M)-Mχ and a priori only continuous on M UM M,

but we need smoothness on M UM M. The obvious inclusion induces an
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RG-isomoφhism:
(1.30)

j : EG X Z / 2 ( M uMι M V U ^ V)\ Θ EfxZ/2(M U ^ M F

For any 7/ e AP(M UM M\ V) we get

^ ω, >/))Mu M = ((ω, i*η))M + ((ω, i*τ*η))M,

since an integral over M UM M is the sum of its restrictions to the two

copies of M. If τ*η = ->/ holds, then (ωUM ω, η))Mu M = 0. Consider

*/ G EG

μ(MΌM M\ V\ΔM Vf with τ*ι/ = η for μ ^ A. Then i*η e

EG(M\ V) and μ Φ λ imply ((ωUM ω, ^)) = 0. Notice that the Hubert

space L AP(M ΌM M\ V UM V) has an orthonormal basis of smooth

eigenvectors of AMu M. For EGxZ/2(MuM M;VUM V)p choose an
A/j 1 1

orthonormal basis {ηχ, η2, , ηr} . Then the Fourier development of
ω UM ω is obtained by the computations above:

which holds in L2AP(M uMχM;VuM V). Since the both sides of the

equation are represented by continuous sections, they agree as functions.

The right side is smooth and hence so is ωUM ω. This finishes the proof

of Proposition 1.27. q.e.d.
We define the equivariant Euler characteristic as

(1.31) χG(M9 Mχ V) = f > l ) P [Hp{M, Mχ V)] e RepR(G).

Proposition 1.32 (Product formula for analytic torsion). Assume a Rie-
mannian G-manifold M whose boundary is the disjoint union M{ ]J M2

and a Riemannian H-manifold N with empty boundary. Let V (resp. W)
be an orthogonal DG{M)-{resp. DH{N)-) representation. Then MxN is a
Riemannian (GxH)-manifold, and V<g>RW an orthogonal DGxIi(Mis-
representation and, using the pairing (1.25), we obtain

pGxH(MxN,M{ xN; V®RW)

= χG(M, MX V) 0 R p?n(N', W) + / £ ( M , Mχ V) 0 R χH(N; W).
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Proof. We show the analogous statement for the zeta-functions if
Real(s) > dim(M)/2. We conclude from (1.21) and (1.22) that

(1.33) Σ ( - l f [ < ( ¥ , Mχ V)p] = 0
p>0

for λ > 0. We derive the equality

(1.34) χG(M, M{;V) = Σ > 1 ) ' • [E°(M, MX\V)\

from Theorem 1.10. Notice that A*(M; V) 0RΛ*(Λ^; W) is dense in
A*(M x N; V 0 R W) and on this dense subspace we have ΔMxN =
AM (g)R id + id <8>RΔN. The eigenvalues of AM build a Hubert basis for
L2A*(M\ V). We conclude that

E°xH(M x ΛΓ, Λf j x ΛΓ . K ®R JF)''

Now we compute

p+q=iλ+μ=γ

ζGx"(M x N; Mχ x N; V ® R W)

[EG

y

x"{M xN M.xN V^ W)]
γ>0

[EG

λ(M, MX;V)P®*EH

μ{N;W)q]

f
q>0 / λ+μ>0

; W)q]
<p>0 / \q>0
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= χG(M, M{ F) ΘR ^(JV W) + C G ( ^ , M, F) 0 R ^^(ΛΓ W).

1.36. If i/ is a subgroup of G, then there are obvious restriction and
induction homomorphisms for R(8)zRepz(G :). Restriction and induction
are also defined for (M, Mχ F ) . The equivariant analytic torsion is
compatible with restriction and induction.

2. Torsion invariants for chain complexes

In order to define PL-torsion invariants for G- CW-complexes and Rie-
mannian (7-manifolds it is convenient to do this for RG-chain complexes
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C = (C^, cj . We say that C is finite if C. is finitely generated for all i,
and is zero for all but a finite number of i' e Z . Let / : C —> D be an RG-
chain equivalence of finite RG-chain complexes and let φ : C o d d Θ £>ev —>
D o d d Θ C e v be an RG-isomorphism. Denote by Cone(/) the mapping
cone of / whose differential is also denoted by c and given by

Choose a chain contraction γ of Cone(/), i.e., a map of degree 1 such that
coγ + γoc = id. Then we obtain an isomorphism (c + γ): Cone(/)o d d —•
Cone(/)e v if Cone(/) o d d , resp. Cone(/)e v , is the sum of all chain modules
of odd, resp. even, dimension. If π denotes the obvious permutation map,
we get a i RG-isomorphism of a finitely generated RG-module

C o n e ί / ) ^ (cΛr) Cone(/)e v A C ^ θ Dev Λ D o d d φ C e v Λ Cone(/)o d d.

Denote its class in Â t (RG) by

(2.1) tG(f,φ) = t{f,φ)eKι(RG).

We recall that Â t (RG) is the abelian group generated by automorphisms
f:P-*P of finitely generated RG-modules with the relations [f2] =
L/il + [/31 for any exact sequence {0} - ( / > , , / ; ) - (P 2 , /2) - , (P 3 , /3) ->
{0} and [gof] = [g] + [f] for f,g:p^P and [ i d : P ^ P ] = 0. We
refer to Luck [21, Chapter 12] for more details about this invariant and
the proof that it is well defined. The proofs of some of the results in this
section are omitted since they are very similar to ones appearing in [21].

An RG-Hilbert complex is an RG-chain complex C together with a G-
invariant R-Hilbert space structure on each Cn . Let / : C —• D be an RG-
chain equivalence of finite RG-Hilbert complexes. Fix an isometric RG-
isomorphism φ: C o d d θ Z>ev —• D o d d θ Ce v . Its existence follows from the
Polar Decomposition Theorem and the fact that CoάάΘDey and ΰ o d d θ C e v

are RG-isomorphic. Given an RG-module P, let P* be HomR(/>,R)
equipped with the RG-module structure g / = / o l(g~ι). The natural
RG-map P -> P** is bijective if and only if P is finitely generated. We
obtain an involution

(2.2) *: Kχ(RG) - KX(RG)9 [f] - [/*].
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Define the Hubert torsion

(2.3) htG(f)=hl(f)eKι(RG)Z/2

by ht(/) = *(/ , φ) + **(/, φ). This is independent of the choice of φ. If
ψ is another choice we have

> Φ) ~ Kf, Ψ)) + *(*(/, 0

= [ψ~l °Φ\ + *[ψ~X °Φ] = [ψ~l °Φ\- [ψ~l oφ] = 0.

Proposition 2.4. If f and g: C —> D and RG-chain homotopic, then

Let C be a finite RG-Hilbert complex. Consider its homology H(C)
as an RG-chain complex by the trivial differential. Suppose that addition-
ally H(C) has the structure of an RG-Hilbert complex. Up to RG-chain
homotopy there is precisely one RG-chain map i: H(C) -+ C satisfying
H(i) = id. Define the Hilbert-Reidemeister torsion

(2.5) hrG(C) = hr(C) e Kx (RG)Z / 2

by hr(C) := ht(i:H(C) -• C) .
Example 2.6. Let G be the trivial group. Let C be a finite R-Hilbert

complex together with a R-Hilbert structure on H(C). Choose orthonor-
mal bases for each C{ and H(C)i. The torsion defined by Milnor [25]
takes values in Kχ (R) = R*/Z*. Its square is a positive real number which
agrees with hr(C) e KX(R) = R*.

We collect the main properties of these invariants. Consider the follow-
ing commutative diagram of finite RG-Hilbert complexes whose rows are
exact and whose vertical arrows are RG-chain equivalences:

0

(2.7)

0

We get an acyclic finite RG-Hilbert complex 0-^ Cn ^ Dn-$ En-+0
concentrated in dimensions 0, 1, and 2 for each neZ. Let hr(Crt, Dn, En)
be its Hilbert-Reidemeister torsion. Define

(2.8) hr(C, D, E) = £ ( - l ) n hr(Cn , Dn , En) e K^RGf2.
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Proposition 2.9 (Additivity).

ht(/) - ht(g) + ht(Λ) = hr(C , ΰ , £ ) - hr(C', ti, Ef).

Let 0 - ί C - ^ D - ^ . E - ^ O b e a n exact sequence of finite RG-Hilbert
complexes. Suppose that H(C), H(D), and H(E) come with RG-Hilbert
structures. The long homology sequence H(C, D, E) inherits the struc-
ture of an acyclic finite RG-Hilbert complex. Analogously to Milnor [25]
we get

Proposition 2.10 (Additivity).

h r ( C ) - hr(Z>) + hτ(E) = h r ( C , D , E ) - hτ(H(C, D, E)).

Proposition 2.11 (Composition formula). If f: C —> D and g: D -> E
are chain equivalences of RG-Hilbert complexes, we have

Proposition 2.12 (Comparison formula). If f: C -> D is an RG-chain
equivalence of finite RG-Hilbert complexes and H(C) and H(D) come
with finite RG-Hilbert complex structures, then H(f): H(C) -• H{D) is
an RG-chain equivalence of finite RG-Hilbert complexes and we get

ht(/) = hr(D) - hr(C) + ht(//(/)).

Proof The proof follows from Proposition 2.11. q.e.d.
Given two finite groups G and H, there is a pairing

®R: K0(RG) 0ZK χ(RH) - Kχ(RG x H),

Notice that A:o(RG) is RepR(<?). Because P and P* are (not naturally)
RG-isomorphic, we get the following induced pairings:

(2 14) Θ R :

® R : KQ(RG) 0 Z ΛΓj (RG)Z/2

If C is a finite RG-chain complex, define its Euler characteristic as

(2.15) χ(C) := X ) ( - l ) ' [ς.] = ^ ( - l ) ' [Ht(Q] e K0(RG).
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Proposition 2.16 (Product formula). Let f: C' -* C, resp. g: Df -+
D, bean RG-, resp. RH-, chain equivalence of finite RG-Hilbert complexes.
Then

h t G x " ( / Θ R g) = χG(Q 0 R ht" (*) + h t V ) ®R xH(D).
(b) Let C, resp. D, be a finite RG-, resp. RH-, chain complex. Assume

that H(C), resp. H(D), possesses a finite RG-, resp. RH-, Hilbert complex
structure. Equip H(C<8>RD) with the finite (RG x H)-Hilbert structure for
which the Kύnneth isomorphism H(C) <8>R H(D) = H(C <8>R /)) becomes
an isometry. Then

hrGxH(C 0 R Z)) = χG(C) 0 R hr^(D) + hrG(C) ΘR Z

H

2.17. If H c G is a subgroup, there are obvious induction and restric-
tion homomorphisms. Both ht and hr are compatible with induction and
restriction.

If C = (C^, c j is a finite RG-chain complex, define its dual RG-
chain complex Cn~* by (Cn~*)r = (C,)* and (cΛ"*) r := ( c n _ Γ + 1 ) \ If
the RG-module P has a finite RG-Hilbert structure given by an RG-
isomorphism φ: P —> P* satisfying φ* = φ, equip P* with the finite

, - 1

RG-Hilbert structure P* -+ P -• P**. Hence C"~* inherits a finite
RG-Hilbert complex structure from C. Notice that the natural RG-map
C -• (cn~*)n~* is an isometric RG-chain isomorphism.

Proposition 2.18. (3) If f: C -> D is an RG-chain equivalence of RG-
Hilbert complexes, then

(b) Let C be a finite RG-Hilbert complex. Assume that H(C) has a
finite RG-Hilbert complex structure. Then

hr(Cn~*) = (-l)n+l -hr(C).

Let f:C-+D be an RG-chain equivalence of finite RG-Hilbert com-
plexes. Let ^(Cj) and £(C.) (resp. κ{Dt) and k(D.)) be two different
RG-Hilbert structures on Cz (resp. D.). Then we obtain RG-automor-
phisms

Proposition 2.20. We have the following equation:

ht(/: (C, JC(C)) - (D, «(£>))) - h t ( / : (C, κ(C)) - (D, *(£>)))

Ϊ > 0
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Proof. Because of Lemma 2.11 it suffices to prove

ht(id: ( c , κ{C)) -> ( c ,

Because of Proposition 2.9 we can assume that C is concentrated in
dimension zero. If φ: (C o, κ(C0)) —> (C o , κ(C0)) is an isometric RG-
isomorphism, we compute

ht(id: (C, κ(C)) - (C, *(C))) = [φ] + [φ*]

= [κ(Coy
lok(CQ)]. q.e.d.

Next we compare ΛΓj(RG)z/2 and R (g>z RepR(G). Let / be a com-
plete set of representatives for the isomorphism classes of irreducible RG-
representations. For any finitely generated RG-module W we have the
natural RG-isomorphism

(2.21) φ : 0 H o m R G ( K , P) Θ E n ( W F ) V -+ P, f®v^ f(υ).
vei

By Schur's Lemma EndR G(F) is a skew field. Hence the canonical homo-
morphism EndR G(F)* -• AΓ1(EndRG(F)) induces an isomorphism from
the abelianization of the group of units EndR G(F)* b -» Kχ(EndRG(V))
(see Silvester [33, p. 133]). We obtain from (2.21) an isomorphism

^ 0 R ( ? ; b
(2.22) va

[ g : P ^ P ] ^ { [ H o m R G ( i d F , g ) ] \ V e /}.

There is an involution *: EndRG(K)*b -* EndRG(K)*b sending [/] to
[k~ι o /* o k] for any RG-isomorphism k: V -> F* satisfying k = k*.
Then φ is compatible with the involution * on K{(RG) and the direct
sum of the involutions * on End R G (F)* b . Because EndR(?(K) is a skew
field over R, it is isomorphic to R, C, or H and we accordingly call
V of real, complex, or quaternionic type. Under these isomorphisms the
involution on EndR ( ?(F) corresponds to the trivial, complex,or quater-
nionic involution. The map R+ x S3 -> H* sending (λ, z) to λ z is
an isomorphism of Lie groups if S3 inherits the Lie group structure from
S 3 c H . The Lie group S3 = SU(2) is its own commutator group. The
inclusion R+ ^» H* and the norm map H* —• R sending a e H to y/ΰά
induce to other inverse isomorphisms R+ —> H*b and H*b —»• R+ . Now
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the inclusion i: R* -> (End R G (F)* b ) z / 2 mapping λ e R* to A-id: F -> F
induces an isomorphism

/: R* —> (EndRG.(F)*b) , if F is of real or complex type,

/: R+ —* (EndR G(F)* b) , if F is of quaternionic type.

Let the isomorphism γχ: R+ —• R (resp. γx θ γ2) * R* —• R θ Z/2, send r

to ln(r) (resp. (ln(|r|.), r/\r\)). Denote by 7 the subset of / consisting of

F's of real or complex type, and by RepR(G) the subgroup of RepR(Gr)

generated by / . For an abelian group A we get the identifications

(2.24) 0 Λ -+ A <8>z RepR(G), 0 ^ -> A <g>z RepR(G)

from the Z-bases / , resp. / . Define

(2.25) Γx θ Γ 2: Kx (RG)Z/2 ^ (R ® z RepR(G)) θ (Z/2 Θ z RepR((?))

to be the composition ({φVeΐγι θ y2) θ ( Θ K € / 77i)) ° ( Θ K € / Γ 1 ) o φ z / 2 .
Proposition 2.26. The map Γ{ θ Γ2 is an isomorphism and is natural

with respect to induction and restriction and the operations of KQ(RG) =
RepR(G). If we denote the Schur index ofVbym(V) = dim R(EndRG( V)),
then

= Σ J^ΰv) ' lπ((det(HomRG(idκ , /)) :

where the determinant is taken for a linear map over R, and the inverse of
ΓjΘΓ2 maps (λ® R [F], ±[W]) to [exp(λ) id: F -> F] + [±id: W - . H^].

2.27. Until now we have dealt with homology and chain complexes.
There is also a cohomology and cochain version. If C* is a finite RG-
Hilbert cochain complex, let co(C*) be the finite RG-Hilbert complex
with co(C*)π := C~n and c~n the nth differential. An RG-cochain
equivalence /* : C* -> D* induces an RG-chain equivalence co(/*) :
co(C*)-^co(£)*). We define

ht(/*) = ht(co(/*)), hr(C*) = hr(co(C*)).

All the results of this section have cochain analogues.
Let C be a finite RG-Hilbert chain complex with differential cn: Cn —>

Cn_x. The adjoint of cn+x is denoted by γn: Cn —• Cn+χ . Define a



286 WOLFGANG LUCK

symmetric and nonnegative definite RG-homomorphism An: Cn —> Cn

by ^ + i °yπ + yn_ι ° cn . Let Eχ{An) be the eigenspace for λ > 0. Define
the holomorphic zeta-function

(2.28) ζn: C -> C 0 Z RepR((?), ^ ] Γ A"5 [Eλ(An)].
Λ>0

By the finite-dimensional analogue of the Hodge Decomposition Theo-
rem 1.10 we have a canonical isomorphism i: E0(An) —> Hn(C). Equip
^(Δ^) c Cn and ^ ( C ) with the induced RG-Hilbert structures. The
following result motivates the definition of analytic torsion and Hilbert-
Reidemeister torsion (cf. Ray-Singer [29, Proposition 1.7]).

Proposition 2.29. (a) Γ ^ C ) ) = Σ , > 0 ( - l ) π n - fsζn\s=0

(b) Γ2(hr(C)) = 1.
Proof. First we treat the case where C is acyclic. Then An is bijective.

Let f'.C —• C* be An = Δ o Δ o oA . Then the following diagram
commutes:

(-1

^odd

^odd

Since the lower horizontal arrow in the square above is the inverse of the
adjoint of the upper horizontal arrow and c* oΔ" 1 is a chain contraction
for C, it follows that hr(C) = - Σn>ςs(-\)n n [ΔJ is true. One easily
checks

: Eχ{\) -, Eλ(An)]

5=0λ>0

This proves the claim for acyclic C. The general case follows from the

obvious exact sequence of a finite RG-Hilbert complex 0 —> H(C) -^ C —>

cok(i) —> 0 and Proposition 2.10. We leave (b) to the reader.

3. PL-torsion

Let G be a finite group. A finite G- CW-complex X is a C ^-complex
X together with a G-action such that for any g e G and any open cell
e c X with eΠl(g)(e) Φ 0 we have l{g){e) = e and l(g)\ = id , where
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l(g): X —• X is left-multiplication with g . We want to define PL-torsion
for finite G- CW-complexes with an RG-Hilbert structure on the homol-
ogy, resp. cohomology, groups. We prefer the name PL-torsion instead of
topological torsion, as in the equivariant setting torsion invariants are not
invariants under G-homeomorphisms in general (see Cappell-Shaneson
[7]). We will apply this to Riemannian G-manifolds using the equivariant
triangulation theorem. Having these invariants also for G- CW-complexes
gives some useful flexibility.

Consider a pair (X, Y) of finite G- CW-complexes. Suppose for sim-

plicity that X is connected. The following definitions are easily extended

to the nonconnected case. Let p: X —• X be the universal covering and

Ϋ := p~l(Y). Then {X, Y) is a finite DG(X)-CW-pair. The group

DG(X) was introduced in (1.1). Its cellular Z[£>G(X)]-chain complex

Cjjt, Ϋ) is free over Z[πx(X)]. Fix an orthogonal DG(X)-representation

V. As we think of π = n{(X) as a group of deck transformations, DG(X)

and π act from the left on C+(X, Ϋ). Let " : Z[DG{X)] -• Z[DG(X)] be

the involution sending Σλd d to Σλd d~ι, and similarly for Rπ.

There is an induced right module structure given by u s := s u for

s e R[DG{X)], ueC^X,Ϋ). Define the RG-Hilbert complex

(3.1) C.(X,Y;V):=C.(X,Y)®R7tV.

The RG-module structure comes from g (u <8>Rπ υ) := gu <8>Rπ gυ for any
lift g e DG(X) of g e G with u e C^(X, 7 and t; e V. We obtain an
RG-Hilbert structure by requiring that for one (and hence all) cellular Zπ-
base B of C^{X, Y) the following R-isomorphism is an isometry with
respect to the orthogonal structure on V:

[ ®Rπv ~ {ab-v\b e B).
B \beB )

Define the RG-Hilbert cochain complex as

(3.2) C*(X,Y V) = HomRπ(C,(X, Ϋ), V).

The RG-structure is induced from the Z>G(X)-action on

HomR(Cjts(Jf, Y)\ V) given by d f := l{d) ofol(d~ι) and the fact that

the π-fixed point set is HomRπ(C^(X, Ϋ)\V). The RG-Hilbert structure

is determined by the property that for one (and hence all) cellular Rπ-base

B of C^(X, Ϋ) the following R-isomorphism is isometric:

φ~{φ(b)\beB}.
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We have explained before how P* inherits an RG-Hilbert structure from
P if P is a finitely generated RG-module with RG-Hilbert structure. Let
H^X, Y\ V) (resp. H*{X, Y; V)) be the homology (resp. cohomology)
of C^X, Y\ V) (resp. C*{X, Y\ V)). There is an isometric RG-chain
isomorphism

(3.3) C*(X, Y; F ) ^ H o m R ( C , ( Z , Y; F*),R)

sending 0 G H o m R π ( Q ( l ? Ϋ), V) to C^X, Ϋ)®RπV* ^ R , u®Rπψ >-+
ψ o φ(u). It induces an RG-isomorphism

(3.4) H*(X, Y; V)-+HomR(H^(X, Y; F*);R).

Definition 3.5. Let (X, Y) be a finite G-CPF-pair and V an or-
thogonal, Z>G(^-representation. Let K^ be an RG-Hilbert structure on
H^(X, Y\V). Define the Hilbert-PL-torsion, or briefly PL-torsion,

by p°(X, Y V, KJ := hr(C+(X, 7 ; F ) , * J (see (2.5)). Similarly, if

K* is an RG-Hilbert structure on H*(X, y F ) , define

by ^ ( J Γ , Y;V,κ*):= hr(C*(X, 7 ; F ) , K*) (see 3.27).
From Proposition 2.18 we derive
Proposition 3.6. If K^ and K* are compatible with (3.4), then

p°(X, Y F , O = - ^ ( ^ r , y ; F , **) .

Remark 3.7. It is convenient to have both the homological and the
cohomological definitions. The first one is more convenient for compu-
tations since other related torsion invariants, like Whitehead torsion, are
given by chain complexes and the cellular chain complex is easier to com-
pute than the cochain complex. The second one fits better into the context
of analytic torsion and deRham cohomology.

Let (/, /j): (X, Xχ) —• (Y, Y{) be a G-homotopy equivalence of pairs

of finite G-CW-complexes. In Dovermann-Rothenberg [11], Illman [17],

and Luck [21] equivariant Whitehead torsion τG{f,fχ) e WhG(y) is

defined. Let F be an orthogonal £>G(y^representation. We consider

RG-Hilbert structures Kt{X) on H.(X, Xχ / * F ) and κt{Y)

on H.(Y, Yχ \f*V). Let the element M. e Kχ(RG)z/2 be given by the
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composition

H iX, Xχ fV) Hii^A) Ht{Y, Yχ V) *Φ Ht{Y, Yχ V)*

Wj/S H^χ^ X^ . fVy
 κiW l

 H(χ ^ . f*yy

Proposition 3.8. There is a natural homomorphism

ω = ωG(Y V): WhG(Γ) -> K^RGf'2

' Y ' V k (Yλλ — nG(Y Y f*V ir (Y\\

= ω ( τ σ ( / , / i ) ) « Σ ( - 1 ) l ' M i

C We describe ω in the language developed in Luck [21]. A class
[k] e WhG(7) is represented by an automorphism k: P -* P of a finitely
generated projective ZΠ(G, 7)-module P. Let x £ Ob(Π(G, Y)) be
represented by the G-map x: G —• Y with G as domain. Let v e Kχ (RG)
be the class of the RG-automorphism k(x) ®Zπ idF of P(x) ®Zπ V, where
k(x) is given by evaluating k at x. Define ω([g]) = v + *i;. From
the definitions we get that ω(τG(f, fχ)) = hX(C^(f, fχ V)). Now apply
Proposition 2.12.

Remark 3.9. A G-homotopy equivalence (/, fχ): (X, Xχ) -+ ( F , Yχ)

is simple if τ G ( / , /J) vanishes. Hence /?^ depends only on the simple

G-homotopy type, provided that H^(Y, Yχ F) vanishes.
Consider the cellular G pushout of pairs of finite G- CW-complexes,

where ix is an inclusion of such pairs:

(ΛLQ 5 AQ) • ( ^ 2 ' ^ 2 /

(3.io) , | \ ^ μ

If F is an orthogonal Z)G(X)-representation, we get an exact sequence of
R(G)-chain complexes

{0} - CJX 0 , Ao, j*0 V) -±^ C.(*,, Aγ j\V) φ Ct(X2, A2, j\V)

Denote by M^ the long homology sequence of the sequence above. Sup-
pose that we have RG-Hilbert structures κ{ on H^(Xi9 Ai9 j*V), for
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1 = 0 , 1 , 2 , and K on H^(X, A,V). Then Af# inherits the structure
of an acyclic finite RG-Hilbert complex. We derive the following propo-
sition from Proposition 2.10.

Proposition 3.11 (Sum formula for PL-torsion).

p°(X,A; V, K) = pG

χ(Xχ, Aχ j\V 9 κχ) + p%(X2,A2; j*2V, κ2)

Let (X, A) (resp. (Y, B)) be a pair of finite G- (resp. H-CW-) com-
plexes, and let V (resp. W) be orthogonal DG{X)- (resp. DH(Y)-) rep-
resentations. Equip HΦ(X9A9V) (resp. H^{Y,B\ W)) with RG- (resp.
R77-) Hubert structures JC(JT) (resp. κ(Y)). Then (ΛΓ, ^) x ( r , i?) is
a pair of finite (G x i/)-CW-complexes, and V ®RW is an orthogonal
representation of DGxH(X xY)= DG(X) x DH(Y). Put on H.((X, ^) x
( 7 , 5) V ΘR FT) the (RG x /7)-Hilbert structure /c(JΓ x Y) induced by
the (RGxίΓ)-Kύnneth isomorphism from H^X, A', V)®RH^{Y,B; W)
to H^((X, A) x {Y, B) V 0 R W). We define the equivariant Euler char-
acteristic

(3.12) / ( * , Λ; F) G ΛΓ0(RG) = RepR(G)

by

χG(X9A; V) := ̂ ( ~ l ) n . [Cn(X9A; V)] = ^ ( - 1 ) " . [Hn(X,A9 V)]9

n>0 n>0

as we have already done for manifolds in (1.31). We derive the following
proposition from Proposition 2.16:

Proposition 3.13 (Product formula for PL-torsion).

p%xH(X, A) x (y, 5); F θ R W, κ(X x Y))

+ / G ( ^ , A K) 0 R p^(Y, B ^

Remark 3.14. The PL-torsion is compatible with induction and restric-
tion by 2.17.

Next we deal with manifolds. ARiemannian G-manifold triad {M\MV

M2) consists of a Riemannian G-manifold M together with (/-invariant
codimension zero submanifolds Mχ and M2 of the boundary dM satis-
fying dM = MιUM2 and dMχ = MχΓιM2 = dM2 . We do not require
in this section that Mχ Π M2 = 0 as we did in previous sections. Regard
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an equivariant triangulation (/; fχ, f2): (K;K{9 K2) -• (AT; Λfj, Af2)
(see Illman [18]). Roughly speaking, this is an ordinary triangulation to-
gether with a regular simplicial action of G on K for which / is G-
equivariant. In particular, (K, Kχ) is a pair of finite G- CW-complexes.
Let V be an orthogonal /^(Λf ^representation. The Riemannian met-
ric on M gives an inner product ((ω, η)) = fM(ω, η)dM = fMω Λ*η
on AP(M). Equip the subspace of harmonic forms Hζaτm(M, Mχ V)
with the induced inner product. There is a natural RG-isomorphism
j : HP(K ,Kχ;f*V)^ HP

S{K ,Kl9f V) between singular and cellular ho-
mology. Denote by κ*a π n the RG-Hilbert structure on H*(K, Kχ f*V)
for which the following RG-isomorphism becomes an isometry, where Ί
is the Hodge isomorphism (see Proposition 1.10):

HP(K, Kχ fV) Λ HP

S{K, Kχ fV) ^ C HP

S{M, Mχ V)

Let JC^™ be the RG-Hilbert structure on H^K, Kχ; fV) given by κ*arm

and (3.4).
Definition 3.15. Define the PL-torsion

p°χ(M,Mχ;V)€Kχ(RG)Z/2

by p<;χ{K,Kχ;ΓV,κlΆm).
If {g g\ ? £2): (Lm, Lχ, L2) —> (M Mχ, M2) is a second triangulation,

then gof~ι is simple, i.e., τG(g~ιof) = 0 in WhG(L). Now Proposition
3.8 shows that the choice of equivariant triangulation does not matter. In
the sequel we will identify M with a triangulation. We emphasize that
our notation of PL-torsion is based on homology (cf. Proposition 3.6).

Definition 3.16. We call the RG-Hilbert structures /c*aπn and κ*a r m

constructed above the harmonic Hubert structures.
In the equivariant setting there is a new invariant involved which does

not occur in the nonequivariant case. For a generator

[M] € HJC^M, dM) ΘZπ

 WZ) = Z

we obtain by Poincare duality an RG-chain equivalence unique up to ho-

motopy:

(3.17) f|[M]: C"-(M, M2;
WV) - C,{M, Mχ V).



292 WOLFGANG LUCK

It induces an RG-isomorphism

(3.18) H (f][M]) ' Hn~*(M, M2;
WV)-+ H^(M, Mχ V).

The construction of f][M] as an RG-chain map uses the existence of
equivariant approximations of the diagonal G-map M —> M x M. Recall
that Cm{M, Mχ V) and Cn~*{M, Mχ V) have preferred RG-Hilbert
structures coming from cellular R-bases and the inner product on V (see
(3.1) and (3.2)).

Definition 3.19. Define the Hilbert-Poincare torsion or briefly Poincare
torsion

p°d(M,Mχ;V)eKχ(RG)Z/2

to be the Hubert torsion of f][M]: Cn~* (M, M2

 w V) -> C^ {M, Mχ V).
This definition is independent of the choice of [AT] since the Hubert

torsion of - id is always zero.
Proposition 3.20. If G acts freely, then p^ά{M, Mχ V) vanishes.

Proof If G acts freely on M, then also DG(M) acts freely on M.
The proof of Poincare duality by the dual cell decomposition shows that
the Z[D(7(M)]-chain equivalence of finitely generated based free
Z[£>G(A/)]-chain complexes f\[M]: Cn~*{M, M2\

WV) -+ C ^ M , A/̂  F)
is base preserving and hence has vanishing Hubert torsion.

Remark 3.21. For nonfree actions the dual CW-complex structure ob-
tained from an equivariant triangulation is not a G- CW-complex struc-
ture. For example, consider Sι with the Z/2-action given by complex
conjugation. The upper and lower hemispheres give obvious equivariant
triangulations. The dual cell decomposition is obtained from it by rota-
tion about 90°. It is not an equivariant cell decomposition since Z/2
acts nontrivially on each of the one-cells. Therefore it can happen that the
Poincare torsion is not trivial if the group acts nonfreely.

On the homology level nothing happens.
Lemma 3.22. The RG-map

H(f][M]): Hn~*(M, M2

 WV) -> H^(M, Mχ V)

is isometric with respect to the harmonic RG-Hilbert structures. In partic-
ular, the Hilbert torsion of it is zero.

Proof The claim follows from the commutativity of the following di-
agram, where A is the deRham isomorphism and ( , ) denotes the Kro-
necker pairing, resp. is given by the Hilbert structure:
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M2;
WV) —^—> Hn~p(M,M2;

wV)

H^{M,MX;V) Hp(M,Mχ;V)

! < • > ! < • »

Proposition 3.23 (Poincare duality for Poincare and PL-torsion). Let

(M Mχ, M2) be an m-dimensional Riemannian G-manifold triad with

orientation homomorphism w: DG(M) -» {d=l}. Let V be an orthogonal

DG (Myrepresentation. Then:

(a) pG

χ(M, Mχ V) + ( - l ) m . p°{M9 M2

 WV) = pξά(M, Mχ V);

(c) χ (M, Mχ V) = (—l)m -^ (M, M2 ̂ K ) .
PROOF, (a) Because of Proposition 3.6 and Lemma 3.22 the claim fol-

lows from the comparison formula (Proposition 2.12) applied to

(b)The RG-chain maps f][M] and Γ|[^ΠΓ~* from C m "*(M, M2;V)
to CJ^M, Mj V) are chain homotopic. Now apply Propositions 2.4 and
2.18.

(c) follows from (3.4).
Remark 3.24. If one compares the statements about Poincare duality

for analytic torsion (Proposition 1.20) and for PL-torsion (Proposition
3.23), it becomes obvious that the Poincare torsion has to enter in a for-
mula relating analytic and PL-torsion.

Example 3.25. Let Z/2 act on Sx by complex conjugation. Equip

Sι with the standard metric scaled by a factor such that the volume of

Sι is the positive real number μ. We use the Z/2-CW-structure with

the upper and lower hemispheres SJ and s]_ as one-cells and the points

- 1 , +1 e C as zero-cells. The cellular RZ/2-chain complex C^(Sι R) is

where ε is the augmentation a + b * 11-> a + b for the generator t e Z/2,

SJ , resp. Sι_ , corresponds to 1, resp. t e R[Z/2], and the points - 1 , 1 to

(1, 0), (0, 1) € R θ R . The cellular R[Z/2]-Hilbert structure is given by



294 WOLFGANG LUCK

the orthonormal R-bases { l , / }c R[Z/2] and {(1, 0), (0, 1)} c R Θ R .

The 1-form μ~1/2 dvol for dvol the volume form has norm 1 because

((/Γ1/2 dvol, μ~1/2 - dυol)) = μ"1 ((dvol, dvol))

= μ~l / dvol Λ*dvol
Js1

Js
dvol = μ~ μ = l .

Js

Notice that the generator of Hχ(Sι R) is represented by id: Sι —• Sι

and we have

/ μ -dvol = μ .
Js1

The harmonic 0-form Sl —• R, z »-• μ~1/2 has norm 1, and evaluating it

at the generator (1, 1) of H0(Sι R) yields 2 μ" 1 / 2 . Hence the following

maps are R[Z/2]-isometries? if R~ and R (resp. H^(Sι R)) carry the
standard (resp. harmonic) R[Z/2]-Hilbert structures:

R -+H0(Sl;R), I

We use them as identifications of R[Z/2]-Hilbert spaces. The following

R[Z/2]-chain map i: H^(C*(Sl R)) -^ C*(Sι, R) satisfies H(i) = id:

R- - ^ - > R

R[Z/2] •iϋiίl R θ R

Its mapping cone is concentrated in dimensions 0, 1, and 2 and has the
following differential c and chain contraction γ , where δ: R[Z/2] -> R~
maps a + bt to a- b:

Hence (c + γ): Cone(/)o d d-^ Cone(/)ev is the R[Z/2]-isomorphism

i /2 ε

μ"I/2/2 -ε I :RθR[Z/2]->RΘRθR~.

0 μl/2/2'δ
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Since we have the R[Z/2]-isometry

[φ o (c + γ)] = [(c + γ) o φ] is represented by

0

0 : R φ R θ R " - * R θ R θ R " .

7

(3.26) p%2{Sι R) = [2μ - id: R - R] + [μ/2 id: R" - R"].

We get by restriction to the trivial subgroup that

(3.27) ppl(Sl;R) = μ2eR*.

We conclude from (3.26) and Lemma 3.32

(3.28) p%2{Sι R") = [μ/2 id: R -> R] + [2// id: R~ ^ R"].

We derive from (3.26), (3.28), and Proposition 3.23

(3.29) p%\sl R) = [4 id: R -> R] + [ I . id: R~ - R"].

Example 3.30, Equip Dι = [0, 1] with the standard metric scaled by
μ > 0. Then Dι has volume μ . The cellular R-chain complex is

The element (μ 1 / 2 / 2 . β1'2β) € # o ( ° ' ; R) h a s n o r m 1 w ^ t h r e s P e c t t o t n e

harmonic Hubert structure. Now one easily checks that

(3.51) ppl(D
l R) = μ e R*.

Recall the map q: DG{M) -» G of (1.2) and the operation of K0(RG) =

RepR((7) on Kχ{RG)m and R^zRepgίG1) defined in (2.14) and (1.25).

Lemma 3.32. Lei W be an orthogonal G-representation. Then

G ,Mχ;V®Vίq*W) = p°n(M, Λ/, V) ΘR [W],

pG

pλ{M, Mχ V ®R / i f ) = /»J(Λ/, Λ/, V) ®

/>p

G

d(M, Λ/, V ®R 9 ίΓ) = pG

ά{M, Mι K) ®R [W].

Proof. There are natural isometric R(7-isomorphisms

A*(M; V) ®^W ^ K* {M V®RW)
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and

Cm(M,Mί;V)®RW^C,(Af, Mι V ®R q W). q.e.d.

Let (M; M,, M2) and (N Nχ, N2) be m-dimensional Riemannian

G-manifold triads and let (/ ;/ , , f2): (M M{, M2) -+ (JV; TV,, JV2) be a

G-homotopy equivalence of such triads. Let V be an orthogonal DG{N)-

representation, and κ^Λτm(M) and κ^arm the harmonic Hubert structures

on Ht(M, Mχ fV) and fl,(ΛΓ, iV, V). The following composition

represents an element ui e Â , (RG)Z' :

, M{;fV)

We introduced the map ωG(N; V): WhG(Λ0 -> Kχ{RG)zl1 in Proposi-
tion 3.8. We derive the following proposition from Propositions 3.8, 2.12,
and 2.18.

Proposition 3.33.

(a) p°(N,Nι;V)-p°(λf,Mi;ΓV)

= ωG(N; V)(τG(f, /.)) - V(-l)' ur

(b) p^iN ,Nι;V)- p^M, M, f V)

= ωG(N; V)(τG(f, /,)) + ( - l ) w ωG(ΛΓ; wV)(τG(f, f2)).

Proposition 3.55 tells in particular how the PL-torsion varies under
change of Riemannian metric. Notice that the Poincare torsion depends
only on the simple G-homotopy type. This is also true for the PL-torsion
if H^N.N^ V) vanishes.

The following pairings are special cases of (2.14):

ΘR : K{(RG)Z/2 ® z RepR(Z/2) - KX(R[G x Z/2])Z / 2 ,

®R : RepΛ(G) 0 Z K{(R[Z/2])Z/2 -, K{(R[G x Z/2])Z / 2.

Proposition 3.34 (Double formula for Poincare and PL-torsion). Let
M be a Riemannian G-manifold, and V an orthogonal DG(M)-representa-
tion. Suppose that dM is the disjoint union Mχ [] M2 and that the metric
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is a product near the boundary. Then

(a) p°xZ/2(M Ly F F UM_ V) = p°(M V) ®R [R]

/(M i ;F)®R[2 id:R->R],

(b) PI^'\M UM_ M, d(M UMι M) • V UM_ V)

= p%(M,M2;V) ®R [R] + p°(M,ΘM;V)

+ χG(Mι;V) ®R[2 id:R-R],

(c) pp

C

d

x Z / 2(M UMιM;V uMι V) = p^M V) ®R [R]

Proof. Let i: M —> MuM M be the inclusion onto the first summand.

We obtain from this map an R[DG(MUM M)]-chain map C^(i): i^C^(M)

—• C j M U M M) for /̂  the induction with the homomorphism D (/):

DG{M) -> DG{MUM M). As i*(VuM V) is K, there is an RG-chain

isomorphism 7 from i^C^(M) ®R[DG,MU M)] V UM V to i^Cm{M\V).

The composition of C^{i) ®R[DG{MU M)] V UM V and 7" 1 is denoted by

(3.35) I,: i#C{M; V) -+ C(MUM M\ VuM V).

Let τ: MUM M -> MUM M be the flip map. As τ* V UM F = K UM K

holds, we also obtain an RG-chain map

(3.36) v C J M U ^ M ; FU M j F ) ^ C j ¥ U ¥ | M ; Ku ¥ ) V).

Define an R[G x Z/2]-chain map

(3.37) f*'{C_^

by

/.(« ®» 1 Φ 6 ®B 1) = -~- ('* + T, o ij(fl) + — (/, - τ .
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Counting the cellular bases we obtain isometric R((j)-isomorphisms for
peZ:

φ: Cp(M, Mχ V) φ Cp(Mχ V) - Cp(M; V),

(3.38) Ψ: Cp(M, Mχ,V)φ Cp(Mχ V) Φ Cp(M, Mχ V)

The map ψ is an R[G x Z/2]-map, if Z/2 acts trivially on Cp(Mι F)
and switches the two summands CAM, Mχ;V). We get from φ the
following isometric R[G x Z/2]-isomorphism:

(φ ®R id) Φ id: (Cp(M, M, V)) ®R R) φ (Cp(Λ/, V) ®R R)

Λ/, V) ®R R".

p°{{φ ®R id) φ id) isNow the composition ψ~l ° fp°{{φ ®R id) φ id) is given by

•id 0 ^
0 v/2 id 0

id 0

Cp(M, Mχ V) φ Cp(Mχ V) φ Cp(M, Mχ V)

- (Cp(M, Λ/, V)) ®R R) φ (Cp(Mχ F) ®R R)

®(Cp(M,Mχ;V)®RBΓ).

The Hubert torsion of this R[G x Z/2]-isomorphism of R[G x Z/2]-Hilbert
modules is easily computed as [Cp(Mχ V)] <g>R [2 id: R -> R]. For the
Hubert torsion of the R[G x Z/2]-chain map /, of R[G x Z/2]-Hilbert
chain complexes we get

(3.39) ht G x Z / 2 (/J = XGiMχ V) ®R [2 id: R ^ R].

Next we compute

(3.40) ht G x Z / 2 (/ί(/J) = 0

on the homology level. The following diagram commutes, where A is
given by the deRham map and the isomorphism (3.4), and / is the com-
position of (1.29) and (1.30):

- ) '

A μ<g>Rid)Θ(Λ®Rid)

Eo(MuMl

 M> VuMι

 v) ^'l > {E0(M;V)(S>RR)Φ{E0(M,Mί;V)^
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The lower vertical map is an isometry because of the following computa-
tion for ω,ηe EQ(M\JM M, V\JM V):

(Λ/2 l(ω), yfϊ • l(η)) = {yfi/2 • i\ω + τ*ω), VΪ/2 i\η + τ*η))M

+ (Λ/2/2 i*(ω - τ*ω), Vϊ/2 C{η - τ*η))M

= (i*ω, i*η)M + {i*τ*ω, i*τ*η)M

This implies (3.40). Now claim (a) follows from the composition for-
mula (Proposition 2.12) applied to the R[G x Z/2]-chain isomorphism f^
defined in (3.37) if we take (3.39) and (3.40) into account. One proves
(b) analogously. Then (c) follows from (a) and (b) and Poincare dual-
ity (Proposition 3.23) since the following R[G x Z/2]-representations are
isomorphic:

C°(M)vυMί

 W°(M)V) ®R- = - C X 2 / 2 ( ^ M , ^ ( F U M I F ) .

This finishes the proof of the double formula.
Remark 3.41. Notice that the double formulas for analytic torsion

(Proposition 1.27) and PL-torsion (Proposition 3.34) differ by a Euler
characteristic term depending only on the boundary. It appears in the
PL-case since the cells in the boundary do contribute to the Hubert struc-
tures. This is not true in the analytic situation where the Hubert structures
come from certain integrals and the boundary does not contribute to them
since it is a zero set. These observations indicate that the Euler character-
istic is the correction term in a formula relating analytic and PL-torsion
for manifolds with boundary.

Example 3.42. In this example we show how the general results above
can be used to compute the torsion invariants for Sι and Dι. We will see
that we get the same answers as in Examples 1.15, 1.1-8, 3.25, and 3.30,
where we computed these invariants directly. Equip Dι with the standard
metric scaled by μ > 0. Then Dι has volume μ. The double Dι u a z )i Dι

is Sι with Z/2-action given by complex conjugation and the Sι-invariant
Riemannian metric for which the volume of Sι is 2 μ . From Poincare
duality (Propositions 1.20 and 3.23) and Proposition 3.20 we get
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By the double formulas (Propositions 1.27 and 3.34) we derive

(3 43) P * ( S ; R ) ^ ( Z ) )

p%2(Sι R) = ppά{Dι). ([R] + [R-]) + 2 [2 id : R -> R]

- 2 [2-id:R~->R~].

We know pan(Sι R) = ln{ppl{Sι R)) from Cheeger [8] and Mϋller [26].
Hence the restriction of (3.43) to the trivial subgroup shows

(3.44) pJDl) = ln{pvl{Dl)) + ln{2).

One easily checks that the generator of HQ(Dι Z) has norm μ~1//2 with

respect to the harmonic Hubert structure when considered in HQ(Dι R).

The projection Dι —• {pt.} is a simple homotopy equivalence. Hence,

from Proposition 3.8 we get

(3.45) l

from (3.44) we get

(3.46) pan

and from (3.43), if v = 2 μ is the volume of Sι, we conclude that

pll\sX R) = ln(iz) [R] + ln(i/) [R"]),

( 3 4 7 ) /^p/2^1 R) = [2i/ id : R -> R] + \vβ id : R" - R~],

P%\S1 R) = [4 id : R - R] - [1/4 id : R~ - R"].

Let M (resp. N) be a Riemannian G- (resp. //-) manifold with bound-
ary. Some care is necessary to put a (GxH)-manifold structure on MxN\
one has to straighten the angle. There seems to be no canonical Rieman-
nian metric on M x N. If / : K —• M, g: L -+ N, and h: X -+ M x N
are equivariant triangulations, then Λ"1 o (/ x g): K x L —• X is a simple
(G x i/)-homotopy equivalence. Hence we get the following proposition
from Propositions 3.8 and 3.13.

Proposition 3.48 (Product formula for Poincare and PL-torsion). Let
(M Mχ, M2) {resp. (N; Nl9 N2)) be a Riemannian G- {resp. H-) man-
ifold triad and let V {resp. W) be an orthogonal DG{M)-{resp. DH{N)-)
representation. Put on the {G x H)- manifold {M x N M x Nχ U Mχ x
N, M x N2 U M2 x N) an invariant Riemannian metric such that the
Kύnneth R[G x ^isomorphismsfrom H^{M, Mχ V)®RH^{N, N{ W)
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to HJyM x N; Mχ x N U M x Nχ; V ®R W) becomes an isometry with
respect to the harmonic structures. Then

(a) pG

ι

xH(MxN,MχxNl)MxNχ;V®RW)

= χG(M, Mχ V) ®R pζx{N, Nχ W)

+ pG

χ(M, Mχ V) ®R χ"(N, ΛΓ, W),

pG

ά{M,M{;V)®RχH{N,Nι;W),

(c)

= χG(M ,Mι;V)

Next we examine how the Poincare and PL-torsion behave under glue-
ing.

Proposition 3.49 (Sum formula for Poincare and PL-torsion). Let
(M; MX, M2) and {N; Nt, N2) be G-manifold triads with invariant Rie-
mannian metric. Let V and W be orthogonal DG(M)- and DG(N)-
representations. Let f:M2^N{ be a G-diffeomorphism, and f: V\M2 ->
f*W\Nx an isometric R[D (M2)]-isomorphism. Put an invariant Rieman-
nian metric on MUj-N. Let Mm be the acyclic finite RG-Hilbert complex
given by the long Mayer- Vietoris homology sequence and the harmonic RG-
Hilbert structures. Define Pt analogously by the long homology sequence
of the pair (M,M{). Then:

(a) pG

x(M Uf N, V u 7 W) = pG

pX{M V) + pG

χ(N; W)

-pGι(M2;V)-hrG(MJ,

(b) p^(M UfN,VDfW) = p^M V) + p^N W) - p°i{M2 V),

(c) χG(M UfN,VufW) = χG(M V) + χG(N W) - χG(M2 V),

(d) pG

x(M, Mχ;V) = pG

χ(M; V) - pG

χ(Mχ V) - hτG(PJ ,

(e) pG

d(M, M, V) = p^M; V) - pξd(Mι V),

(f) χG(M ,MX;V) = χG(M V) - χG(Mχ V).

Proof, (a) and (d) follow directly from Proposition 3.11.
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(e) We have exact sequences of RG-chain complexes

(3.50) 0 - Cm{Mx V) - C,(M; V) - C,(M, M, K) - 0,

(3 51) ° "

We have the following canonical exact sequences if Cyl(p) and Cone(/?)
are the mapping cylinder and cone of p , and P^ and Q^ are the mapping
cones of Cm(M,dM\wV) and Cφ(Λf, M 2 ; W K ) :

0 -> C,(Λ/, M2

 WV) -> Cyl(p) -• Cone(/?) -> 0,

(3.52) 0 -> CΦ(Λ/, aΛf; W F ) ̂  Cyl(p) - β, - 0,

0 - ^ C , ^ , dMχ

 WK) - Cone(^) ->/>,-* 0.

Since P^ and Q^ are contractible, the last two sequences in (3.52) split
as exact sequences of RG-chain complexes (see Cohen [9]). Choose such
a splitting. Then, by applying C+ H-> Cm~*, we get the following exact
sequence from (3.52):

{0} -+ Cm'X'\Mχ, dMχ

 WV) Θ P m " *

(3.53) - C m "*(M, V m *

Now one constructs the following commutative diagram of RG-Hilbert
complexes with (3.50) and (3.53) as exact rows such that / (resp. g,
resp. h) represents Π ί ^ ] ° P Γ (resp. [\M] o pr, resp. Π[^]) f°Γ PΓ the
projection:

Cm~1"*(Λ/1, dMχ \
WV) Θ Pm~*^ Cm~\M, dM',wV) Θ Qm~*^ Cm~*{M, M2 \wV)

\ I*
Since prm"*: Pm~* - . {0} and pr w "*: β"*"* -> {0} have vanishing
Hubert torsion, we get from Propositions 2.4 and 2.11 that

P%(Mι;V) = htG(f), p^(M;V) = htG(g), p^(M, Mι V) = htG(h).

Now the claim follows from Proposition 2.9.
(b) is proven analogously starting with

0 - C.(Λ/, V) -> C,(Λ/; K) Θ Ct(7V; F) - Ct(MufN; VufW)^0,

{0} -» C,(M, dMχ V)^Ct(M,dM;V)φCt(N,dN; V)

-*Ct(MUfN,d(MυfN; VυfW)-^ {0}.

(c) and (f) are obvious. This finishes the proof of the sum formula.
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4. Comparison of analytic and PL-torsion

Let G be a finite group. Consider a Riemannian G-manifold M
whose boundary dM is Mχ ]JM2. We have introduced an extension

0 -> π{(M) Λ DG(p) ^G -* 0 in (1.2) and an operation of DG(M) on

the universal covering M of M extending the πj(Λ/)-action and covering

the (7-action in (1.3) if π{(M) is identified with the group of deck trans-

formations of the universal covering. Let V be an orthogonal DG(M)-

representation. We introduced analytic torsion

in Definition 1.14, PL-torsion

pG

[(M,Mι;V)eKι(RG)z/2

in Definition 3.15, and Poincare torsion

pG

ά(M,Mι;V)eKι(RG)Z/2

in Definition 3.19. In (2.25) we defined an isomorphism

Γ{ θ Γ 2 : Kχ(RG)Z/2 - (R ® z RepR(G)) Θ (Z/2 0 Z RepR(G)).

We want to relate these invariants by this isomorphism. One easily checks

Proposition 4.1. Γ2(p°(M, M t F)) = Γ2(pG

ά(M, M t F)) = 0.
Hence only the images of PL-torsion and Poincare torsion under Γ{ are

interesting. We need the following technical condition. We call DG(M)

representations V and W coherent if for any H c G and x e MH their

restrictions to H by H = DH({pt.}) D"U{x)) > ̂ ( Λ / ) Λ D σ (M) are

Ri/-isomorphic, where j(x): {pt.} -^ M has {x} as image and k is the
obvious inclusion. This is equivalent to the assumption that the G-vector
bundles M x f f ί i f J and M xff ίλ4λW are locally isometrically isomorphic

71 j \M. ) 71 j ^iW )

(cf. the proof of Lemma 4.14).
Definition 4.2. We call a Z)G(Λ/)-representation V coherent to a G-

representation if V and q* W are coherent for an appropriate (/-represen-
tation W.

Example 4.3. If MH is nonempty and connected for all H c G, then
any (/-representation is coherent to a (/-representation W. Namely, for
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a fixed element x e MG the homomorphism s: G = DG({pt.})

DG{M) splits q: DG(M) -> G. Put W = s*V. For any y e MH

the //-maps j(x) and 7(y) are //-homotopic. Hence the composition

DG(M) agrees with the composition H = DH({pt.}) D"{i{y))>

DH{M) Λ Z

Example 4.4. Let Z/2 a c t o n S 1 by complex conjugation. For - 1 , 1

€ 5 ι we get different sections s+, s~: Z/2 -> Dz/2(Sι) of <?. Iden-

tify Dz/2(Sι) with the semidirect product Z x 5 Z/2 using 5 + . Then

s~: Z/2 —• Z x^ Z/2 sends m to ( ( - l ) m , m ) . Consider the one-dimen-

sional DZ/2(S^-representation given by Z x 5 Z/2 -> {±1} , (n,m) »-•

( - l ) π + m it cannot be coherent to a Z/2-representation since its restric-

tions with s+ and s~ are not the same.

Our main result is:
Theorem 4.5 (Torsion formula for manifolds with boundary and symme-

try). Let M be a Riemannian G-manifold whose boundary is the disjoint
union Mι\JM2. Let V be an equivariant coefficient system which is co-
herent to a G-representation. Assume that the metric is a product near the
boundary. Then

° J , M{ V)) - l- Γ,(/&(M, Mι V))

Recall that WV is the w-twisted DG(M)-representation given by V
and the orientation homomorphism w: DG(M) -> {±1} defined in (1.4).
We will give examples, computations, and applications in the next section.
The remainder of this section is devoted to the proof of Theorem 4.5.

We verify Theorem 4.5 under certain additional assumptions and re-
move these one after the other. We will use the work of Lott-Rothenberg
[19] where Theorem 4.5 is proved following Muller [26], provided that dM
is empty, M is orientable, and V is the trivial DG(M)-representation R.
Their definitions still make sense when we remove the last condition that
V is trivial. Fix an orthogonal G-representation W and an orthogonal
DG(M)-representation V. Let σ: G —• AutR(W) be the G-structure on
W. We extend the basic definitions of Lott-Rothenberg [19]. One gets
their definitions back if one puts V — R. Notice that V plays the role
of an equivariant coefficient system for M, whereas W is a base element
for the representation ring when W is irreducible.



ANALYTIC AND TOPOLOGICAL TORSION 305

Let Ap: AP(M; V) -> AP{M; V) be the Laplacian and let pr£arm :

AP(M; V) -> A?(M\ V) be the harmonic projection onto Hζaτm(M; V).

Let Δ*: AP{M\ V) -> AP(M; V) be the sum Ap + pr£ a r m . Denote by

pr: ΛP(M; F) <g>R ίF -* (ΛP(M; F) ΘR ίF)^ the projection operator onto

the fixed point set sending (ω ®R it;) to ̂  ΣgeG l{g~l)*ω ΘR σ(g)(w),

where /(g"1)* is induced from left multiplication with g~ι . In Lott-
Rothenberg [19] a meromorphic function μp

w(s), analytic in 0, is con-
structed which for s e C with Real(.S') > m/2 is given by

1 f°° -l=
 ΓTTT ' / '* trace(proexp(-ί(Δp <8>R iάw)))dt

ι\!>) Jo(4.6)

where the trace is taken for operators AP(M; V) ®R W —> AP(M; V) <g>R

W. The existence of the meromorphic extension is based on standard
approximations of the heat kernel. We recall the definition of analytic
torsion in Lott-Rothenberg [19]:

(4.7) Tw{M;V) = r^{-\)".p.Ts

P>0

G R .

5=0

The PL-torsion τw{M\ V) e R* in Lott-Rothenberg [19] is defined in
the following way. They use the same RG-Hilbert structures on CP(M\ V)
and HP{M\V) as we do and equip (CP{M;V) <g>R PF)G and
H((CP(M; V) (g>R ίF)G) = (HP(M; V) ®R ίF)G) with the RG-Hilbert
structure induced by restriction from the product structures. They
choose orthonormal bases and define τw(M; V) by Milnor's defini-
tion of torsion for the finitely generated based free R-cochain complex
(CP{M; V) (g>R W)G with based free cohomology. One easily checks (cf.
Example 2.6)

(4.8) v ( M ; V)2 = hr((C;(M; F) ®R W)G) e R*.

Let / be a complete set of representatives of the isomorphism classes
of irreducible (/-representations. Let m(W) = dimR(JF ®R W)G) =
dimR(HomR G(JF, W)) be the Schur index of W € / .

Lemma 4.9. (a) For s eC with Real(s) > m/2, in C(8)zRepR(G) for
p>0

l

p

wei

(b) In R<g>zRepR(G)

t V) = 2. 2 m(PF)"1 . 7V(M; F)
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xZ/2
(c)In Kt{

Proof. For any G-representation P in RepR(G) from (2.21) we obtain
the following equality:

(4.10) [P] = Σ m{W)~λ dimR((P ®R wf)

As pr is the projection operator, we have

(4.11)

- ^ 0 R i d ^ ) ) : AP{M; V) ®R W - . ΛP(M; F)

= trace(exp(-/(Δp <g>R id^) G ) :

; V)®RW)G),

which implies

1 ί°°
μP

w(s) = =T-T- / Γs trace(exp(-?(Δ/? 0 R id^
1 l^j ./o

(4 1 2) = 5^
λ>0

λ>0

Now claim (a) follows from (4.10) and (4.12). We derive (b) from (a),
and (c) is proven similarly using (4.8). q.e.d.

The main result in Lott-Rothenberg [19] is the following theorem.
Theorem 4.13 (Lott-Rothenberg). Let M be an odd-dimensional ori-

entate Riemannian G-manifold. Suppose that G is orientation preserving
and dM is empty. If W is an orthogonal G-representationf then

Lott and Rothenberg's proof is modelled upon the proof of Muller [26].
Notice that Muller allows arbitrary coefficients. Lott and Rothenberg de-
fine an equivariant version of the combinatorial torsion τc

w{M\ V) based
on Whitney's map, and show that the estimate of §§1-5 in Muller [26] still
hold in the equivariant setting. Then they define an equivariant parametrix
and generalize the estimate of §8 in Muller [26]. Since Lott and Rothenberg
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work with trivial coefficients V, they can leave out the first step in Mϋller
[26], where the difference between analytic and PL-torsions is shown to be
independent of V. Lott and Rothenberg carry out the second step equiv-
ariantly, where the difference is examined under surgery, and thus get their
result. We want to deal with Mϋller's first step.

Lemma 4.14. Let M be a closed odd-dimensional G-manifold with
trivial orientation behavior wG(M). Let U and V be coherent orthogonal
DG (M)-representations and W an orthogonal G-representation. Then

TW(M; U)-\n(τw(M', U)) = TW{M\ V))-ln(τw(M V)).

Proof. For any x e M with isotropy group H = {g e G\gx = x}
there is an open neighborhood of the shape GxHS for an //-representa-
tion S (see Bredon [6, VI.2.4, Corollary]). The key observation is that the
restrictions of the (/-vector bundles with Riemannian metrics Mx U and
MxπV to GxHS are isometrically isomorphic since then the argument in
Miiller [26, §9] goes through following the equivariant pattern of Lott and
Rothenberg. The inclusion G/H —• GxHS sending gH to (g, 0) is a G~
homotopy equivalence so that it suffices to regard the restrictions to G/H.
We must show for the inclusion j : x —> M that the restrictions agree with

H = DH(x) - ^ U DH{M) Λ DG{M) of U and V for k the obvious

inclusion. As R//-isomorphic implies isometrically Ri/-isomorphic, this

follows from the condition that U and V are coherent.
Lemma 4.15. Theorem 4.5 is true if M is closed and wG(M) = 0.

Proof If dim(M) is even, we get p^n{M\ V) = 0 from Poincare dual-
ity (Proposition 1.20). Analogously we obtain 2-pG

{(M; V) = ppά(M; V)
from Proposition 3.23 and the claim follows. Suppose that M is odd-
dimensional. We may assume V = q*U for some G-representation U by
Lemma 4.14 and the assumption that V is coherent to a G-representation.
Because of Lemma 3.32 we may suppose U = R. Finally apply Lemma
4.9 and Theorem 4.13 to get the lemma, q.e.d.

Next we want to drop the condition that G is orientation preserving.
Lemma 4.16. Theorem 4.5 is true if M is closed and M is orientable.
Proof Since M is orientable, wG{M): DG{M) -> {±1} factorizes

over q: DG(M) -• G into w: G -» {±1}. Let K be the kernel of w .
Since K operates orientation preserving, Lemma 4.15 applies to res^ M.

It suffices to treat the case K Φ G. Because the maps ind^ o resG on
z / 2 and on R<g>z RepR(G) are given by ? ®R ([R] + Γ(R)]), and
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Γj is compatible with restriction, we obtain

(4.17)

(pi(M; V) - Γ^M; V)) + ± Γ,(/£(JW; V))) ®R ([R] + [WR]) = 0.

Let Z/2 act on Sι by complex conjugation. From the product formulas
(Propositions 1.32 and 3.13) we derive

x Sl, V ®R R) - Γ, (p^xZ/2(M x S1 V ®R R))

+ l2-Γι(P^Zβ(MχSl;V®RR))

= χ (M; V) ®n (p ' (S R) - ΓΛpJ (S
(4.18) Λ R ^ a n I V F P ' V

 (

We conclude from (1.16), (3.26), and (3.29) that

(4.19) p^\s1;R)-Γi(pξ(\sl;V)) + ί.Γι(pli2(Sl

Obviously

(4.20) * Z / V R) - [R] - [R~].

If we restrict the G x Z/2-operation on M x 5 1 to G by id xwJ: G —>
G x Z/2, we obtain an orientation preserving action. Hence we can apply
Lemma 4.15 to obtain in consequence of (4.18), (4.19), and (4.20),
(4.21)
(PI(M; V) - Γ,(^(M; V)) + ±. Γ,(/£(Λ/; V))) ®R ([R] - f R]) = 0.

Hence adding (4.17) and (4.21), and dividing by 2 yield the claim.
Lemma 4.22. Theorem 4.5 is true if M is closed.

Proof. Assume that M is not orientable. Let p: M —> M be the orien-

tation covering. There is a group extension 0 —• Z/2 -> G Λ G -• 0 and

a (/-operation on M extending the Z/2-action on Λf and covering the

G-action on M. Since M is orientable, the claim for the (/-manifold M
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follows from Lemma 4.16. Applying induction with q gives the assertion
also for M. q.e.d.

Now we are ready to prove Theorem 4.5. Assume that Mχ=0. Let the

orthogonal DG(M)-representation V be coherent to the (/-representation

W. Then VudMV is coherent to W\ΔM W as a (GxZ/2)-representation.

Because of Lemma 4.22, for the closed (G x Z/2)-manifold M UdM M we

get

(4.23) =Γι(p°ι

xZ/2(MudMM', VU9MV))

Substituting the double formulas (Propositions 1.27 and 3.34) in (4.23)
gives
(4.24)

ί V) ®R [R] + pG

Λn{M ,8M;V) ®R [IT]

ln(2) χG(dM;V)®fί[R]

Ϊ ! p d ι Ί I U > d M < R

- i ln(2) χG{dM V) ®R IR] + I ln(2) / ( 3 Λ / K) ®R [R~]

= (Γι(pG

ι(M;V))-ί.Γι(pG

d(M;V))

Now the claim in the case M, = 0 follows from comparing the coefficients
of [R] in (4.24). In the general case we repeat this argument, but now we
glue along M, instead of dM. Then the equation corresponding to (4.24)
looks like
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(4.25)

pί(M ' v) ®R TO + PLW, MX • V) ®R [R-]

; V)) ®R [R] + rx{p°(M, Mχ F)) ®R [R~]

+ ln(2) / ?(Λ/ 1;F)®R[R]

- ϊ * Γ ^ Λ / ; F)) ®R [R] - I Γ,(/£(Λf, Λf, F)) <8>R [R"J

2 Λ

= (Γ, (p°{M F)) - i Γ, (/£d(Λ/ F)) + ί ln(2)

•/(9M;F))® R [R]

+ (Γ, (pnl(M, M, F)) - A Γ.(o H(Λ/, Λί. F))
v 1 v ~pl *• ' 1 ' ' ' 2 1 v ~ p α v ' 1 ' ''

+ i ln(2) / ( a Λ / ; F ) ) ® R [ R l .

Hence Theorem 4.5 follows from comparing the coefficients of R" . q.e.d.
We end this section by indicating the proof of Lemma 1.13 about the

meromorphic extension of the equivariant zeta-function. As μp

w{s) de-
fined in (4.6) has a meromorphic extension to the complex plane, analytic
in 0, the same is true for ζ(M\ V)(s) by Lemma 4.9, provided that M is
closed and w (M) = 0. Since the product formula (Proposition 1.32) and
double formula (Proposition 1.27) give explicit identities of zeta-functions
for Real(s) > m/2,the arguments in the proof of Theorem 4.5 can also
be used to verify Lemma 1.13.

5. Some computations

In this section we treat some special cases as an illustration. First,
suppose that G is trivial. Then

Γ, Θ Γ 2 : K{{RG)Z/2 -> (R ® z RepR(G)) Θ (Z/2 <8>z RepR(G))

reduces to R* —> R, r ι-> ln(r/|r |), and p^(M, M{ V) is just a pos-

itive real number. Moreover, χG(dM; V) is just dimR(F) χ(dM),
where χ(dM) is the ordinary Euler characteristic. By Proposition 5.20,

XW, MX V) vanishes. From Theorem 4.5 we get the following corol-
lary.
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Corollary 5.1. Let M be a Riemannian manifold whose boundary is
the disjoint union of Mχ and M2. Suppose that the metric is a product
near the boundary. Let V be an orthogonal πχ(M)-representation. Then

/>an(M, Mχ;V) = ln(ppX(M, Mχ V)) + *ψ. χ(dM). dimR V.

Notice that our definition of analytic torsion differs from the one in
Ray-Singer [29] by a factor of 2, and our PL-torsion is the square of theirs.
Corollary 5.1 for closed manifolds was independently proved by Cheeger
[8] and Mϋller [26].

For trivial G and V the PL-torsion can be computed as follows. Fix
a dimension p > 0. Choose an orthonormal basis {ωχ, ω2, , ωβ } for

the space of harmonic /?-forms Hζ^^M, Mx V). Let {σχ, σ2, , σ* }
be a set of cycles in the singular (or cellular) chain complex with integral
coefficients of (M, M{) such that the set of their classes in
Hp(M', M{ Z)/Tors(Hp(M, Mχ\Z)) is an integral basis. Let rp be the
determinant of the following matrix:

Define

(5.2) r(M,Mχ) =

P=o

Define the multiplicative Euler characteristic to be
m

(5.3) mχ(M, Mχ) = J J |Tors(^.(Λ/, A^ Z))| (~ 1 } .
/7=0

The following result was proved in Cheeger [8, (0.1) and (1.4)].
Proposition 5.4. Let (M, Mχ, M2) be a triad of Riemannian mani-

folds. Then

ppX(M, Mχ V) = mχ(M, Mχf . r(M, Mχ).

Proof Let κ)nt be the Hubert structure on H^M, Mj R) for which

the basis given by {σχ, σ2, , σ« } is orthonormal. From Proposition

3.8 we derive

ppX(M, Mχ R) = />pl(M, Mχ, κ h a r m ) = ^ p l ( M , M , , ^ n t ) . r ( M , Mχ).
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Hence it suffices to show

ppl(M9 Mχ, κ i n t) = mχ(M, M{).

Its elementary proof can be found, for example, in Cheeger [8, (1.4)] and
Luck [21, Lemma 18.34].

Corollary 5.5. Let M be an m-dimensional Riemannian manifold.
(a) // M is a rational homology sphere, i.e., Hm{M\Q) = H^{Sm Q),

then

pm(M) = ln(/>pl(M)) = (1 + (- l ) m + 1 ) ln(Vol(Af))

m - l

p=\

(b) If M is a rational homology point, i.e., H^(M; Q) = H^({point}\ Q),
then

; R) = ln(Vol(M)) + (1 + (-

m-\

p=\

Next we treat the case where M is orientable and G is orientation
preserving on M, or equivalently, where wG(M) is trivial. From Theo-
rem 4.5 and Poincare duality (Propositions 1.20 and 3.23) we derive the
following corollary.

Corollary 5.6. Let M be a Riemannian G-manifold with invariant Rie-
mannian metric. Suppose M is closed and w (M) = 0. Let V be an
orthogonal DG(M)-representation coherent to a G-representation.

(a) // dim(Λf) is odd, then

pί(M V) = Γι(ppl(M- V)), /?pd(M; V) = 0.

(b) If dim(M) is even, then

pan(M; V) = 0, pG

pl(M; V) = i ^ ( M ; V).

Remark 5.7. The assumption w (M) = 0 is necessary in Corollary

5.6. We have already shown ρ^2(Sι R) Φ 0 for Z/2 acting by com-

plex conjugation in (3.29). Let Z/2 act on 5* by sending (x, y, z) to

(-x, y,z). Then S2 is the double of D2 for appropriate Riemannian

metrics on S2. From the double formula (Proposition 1.27), Poincare
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duality (Proposition 1.20), Proposition 3.8, and Corollary 5.1 we derive
that

pll\s2 R) = pan(D2 R) . ([R] - [R"]) = ln(Vol(S2)/2). ([R] - [IT]).

Hence p^2{S2) is not necessarily zero. Let RP71 be the «-dimensional
real projective space, which is rationally a point if n is even. From Corol-
lary 5.5 we get

/>an(RP2/2 R) = ln(Vol(RP2")) - In ln(2).

Again this may be nonzero.
Next we analyze how the analytic torsion changes under variation of

the metric and G-homotopy equivalence. We just have to combine Theo-
rem 4.5 and Proposition 3.33. Suppose that (/; fy, f2): (M;Mχ9 M2) -+
(N N{, N2), and V and W satisfy the same hypothesis as in Proposition
3.33, and assume additionally that M{nM2 and N{nN2 are empty. Using
the same notation as in Proposition 3.33, we get the following proposition.

Proposition 5.8.

+ (-If'1.1. ωG(N;wV)(τG(f,,

Consider an isometric G-diffeomorphism f:M2 -> Nx and an

isometric RDG(Λ/2)-isomorphism f-V\M -> W\ N . Denote by

D*(MUfN, M, N; V, W) (resp. D*(M, Mχ V)) the acyclic finite R(ϊ-

Hilbert chain complex given by the long Mayer-Vietoris sequence (resp.

the long homology sequence) of the pair and the harmonic RG-Hilbert

structures. From the sum formula (Proposition 3.49) and Theorem 4.5 we

derive the following theorem.
Theorem 5.9 (Sum formula for analytic torsion).

pt(MUfN; VUfW) = p°n(M; F) + /£(iV; W)-pG(M2; V)

(a) -Γx{ht{D*{MUfN, M9 N\ V, W)))

V) - p^(M{ V)
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Remark 5.10. The sum formula is very useful for computations. One
may chop a manifold into elementary pieces, compute the analytic torsion
for each piece, and use the sum formula to get the analytic torsion for the
manifold itself. The existence of such a formula is remarkable from the
analytic point of view since it is very hard to get information about the
spectrum of the Laplace operator on M Uj- N from the spectrum of the
Laplace operator on M, TV, and Mχ. We do not have a direct analytic
proof of the sum formula, but such a proof may be hidden in the paper
of Muller [26, §10]. If one has a proof for the sum formula not using
Theorem 4.5, then one can prove Theorem 4.5 by using induction over
the number of handles.

Next we compute the various torsion invariants for (/-representations
(cf. Ray [28]). Define for a Riemannian G-manifold

(5 11) β™(M) = P™(M) + l n ( V o l ( M ) ) ' ( * G ( M ) " 2 ' ™ ) '
W) PIW) + ln(Vol(M)). (χG(M) - 2. [R]).

Let V be a G-representation. Choose any orthogonal structure and any
invariant Riemannian metric on DV which is a product near the boundary
SV. Then pG

n and pG

x are defined for SV and DV and depend only on
the G-diffeomorphism type, but not on the other choices, by Proposition
5.8 since the equivariant Whitehead torsion of a G-diffeomorphism is zero.

Lemma 5.12. (a) p^(D(V θ W)) = pG

ά(DV) + p%(DW).

(b)
(c) p^(DV) = -L2.Γi(pξά(DV)) + ψ-χG(SV).

S-i /*•> ί~<

(d)

(e) P%{SV) = pξd(DV) ®R (χG(SV) - [R]).

(f) Pί(SV) = Tx{p%ϋDV)) 0 R [\ χG(SV) - [R]).
Proof, (a) is a consequence of the product formula for Poincare torsion

(Proposition 3.48).
(b) As the projection from DV to a point is a simple G-homotopy

equivalence, the claim follows from Proposition 3.8.
(c) follows from Theorem 4.5 and (b).
(d) and (e) follow from Poincare duality (Proposition 3.23) and the sum

formula (Proposition 3.49).
(f) is a consequence of Theorem 4.5 and (d) and (e).
Remark 5.13. Because of Lemma 5.12 above we obtain a homomor-

phism
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(5.14) RepR(G) - R ^ z RepR(G), [V] -> p°ά(DV).

Hence it suffices to compute the torsion invariants for irreducible G-
representations in order to know it for all (^-representations. Elements in
R<g>zRepR(G) and hence, by Proposition 2.26, also elements in Kχ (RG)Z / 2

are detected by restriction to cyclic subgroups so that it is enough to com-
pute the torsion elements of irreducible (/-representations for cyclic G.

Let G be the cyclic group Z/n. Let d > 0 be a divisor of n. If
d > 3, let V(j, d) for 1 < j < d/2 be the (real) two-dimensional G-
representation given by multiplication with primitive dth root of unity
exp(2πz^) on C. Let v(d/2,d) be the unique one-dimensional non-
trivial G-representation, if d is even, and R the trivial G-representation.
Denote by I{d) the set {j e Z11 < j < d/2, (d, j) = (1)} . Then the set

{V(j9d)\d>2, d\n , l<

is a complete set of representatives for the irreducible G-representations.
Using Lemma 5.12 in the first case and the double formula (Proposition
3.34) in the second case, one easily computes

= [d2 id : R -> R]

(5.15)
\<k<d/2

exp 2πi-r - 1 •id: K(fc)-> V(k,d)

for d\n, d>3, j e I { d ) ,

p%(DV(l, 2)) = [2 -id : R ^ R] - [2 -id : V(l, 2) - F ( l , 2)],

/£(D(R)) = 0.

Now one can describe the homomorphism (5.14) above by characters.
Lemma 5.16 (Character formula). Let G be a finite group and V a

G-representation with character chF . Then p^ά(DV) e R<g>zRepR(G) can
be viewed as a class function on G with values in R. Let g e G be an
element. Let n be the order of the cyclic subgroup (g) generated by g.
Then the value of P^d{DV) at g is 0 if n = 1, and otherwise
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d\n,d>2j€l(d)

Σ ^ chF(g').(-l)' ln(4)

+ Σ Σ
d\n,d>

\n(d2) -
\<k<d/2

Theorem 5.17. Lei G be a finite group. Then there is an injective ring
homomorphism

[V] ~ dimR(F) φ

Proof. This homomorphism is compatible with restriction to subgroups
of G for an appropriate restriction homomorphism on the right side (for
the details see Luck [21]). Hence it suffices to consider the case where G
is cyclic.

Let Rep£ee((j) be the subgroup of RepR((r) generated by all free G-

representations. Let res^//7: RepR(G/H) —• RepR(G) be restriction with

the projection G —• G/H for a subgroup H c G. Then we obtain the

following isomorphism, provided that G is cyclic:

(5.18) 0 τcsG

G/H: 0 Repίee(G///) - RepR(G).
HCG HCG

With respect to this splitting of the representation ring, pR is given by an
upper triangle matrix. Hence it suffices to show injectivity for the diagonal
entrees, i.e., the injectivity of

Rep£ee((?) - K^RGf2, [V] %
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Consider the ring homomorphism

ψk: R[Z/n]^C*

sending the generator to the root of unity exp(2π/|). The set {V(j) \ j e

I(n)} is a basis for RepR (G). The image of [^(7)] under ψk o pR is

I exp(2π/^ - l ) f 2 for d > 3, 1 < k < d/2, and 1/2 for d = 2. Now an

application of Franz' Lemma finishes the proof (see Franz [13] and Cohen

[9]). q.e.d.
We get as an immediate conclusion of Theorem 5.17 the celebrated

result of deRham [30] that two orthogonal G-representations V and W
are isometrically RG-isomorphic if and only if their unit spheres are G-
diffeomorphic. Similar proofs using PL-torsion (resp. analytic torsion)
can be found in Rothenberg [31] and Lott-Rothenberg [19]. The result is
an extension of the classification of Lens spaces, which is carried out for
example in Cohen [9] and Milnor [25].

The result of deRham does not hold in the topological category. Namely,
there are nonlinearly isomorphic G-representations V and W whose
unit spheres are G-homeomorphic (see Cappell-Shaneson [7]). However,
if G has odd order, G-homeomorphic implies G-diffeomorphic for unit
spheres in G-representations as shown by Hsiang-Pardon [16] and Madsen-
Rothenberg [24].

The sum formula (Proposition 3.11) implies a local formula for Poincare
torsion. For this purpose we have to recall a different notion of equivariant
Euler characteristic as defined in Luck [20]. Given a G-space X, denote
by {G/? -> X) the set of all G-maps G/H -* X for all subgroups H
of G. x: G/H -> X and y: G/K -> X are called to be equivalent if
there is a G-isomorphism σ: G/H —> G/K such that y o σ and x are
G-homotopic. Let {G/? —• X}/ ~ be the set of equivalence classes under
this equivalence relation on {G/? —> X} . Given a G-map x: G/H —• X,
define XH(x) to be the component of XH containing the point x(eH).
There is a bijection

(5.19) {G/? -> X}/ ~-> U πo(XH)/WH, [x: G/H ->*]-> [XH(x)],

where the coproduct runs over the set of conjugacy classes (H) of sub-

groups of G. Let U (X) be the free abelian group generated by

{G/? -> X}/ ~ . Let X>H be the subset of those points in X, whose

isotropy group Gχ satisfies Gχ D H, Gχ Φ H, and WH(x) is the

isotropy group of [^^(JC)] e πo(XH) under the WH-aclion. Given a
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pair (X, Y) of finite G-CW-complexes, define its universal equivariant
Euler characteristic in the sense of Luck [20]

(5.20) χG

niy(X) e UG(X)

by assigning to x: G/H —> X the integer which is given by the ordinary
Euler characteristic χ{XH(x)/WH{x), (XH{x)Γι(X>HUY))/WH(x)). It
is connected to the equivariant Euler characteristic defined in (3.12) by
the following map:

(5.21) ΘG(X): UG{X) -> RepR(G), [JC: G/H ->X]^ [R[G/H]].

From the universal property of χG

niy and the sum formula (Proposition

3.49) for χG (see Luck [20]) we derive the following lemma.

Lemma 5.22. θG(X)(χG

niv(X, Y)) = χG(X, Y).

Let (M9 Mχ, M2) be a (/-manifold triad, and V be an orthogonal
G(M)-representation. Given x: G/H

tation x* V by restricting V to H by
DG(M)-representation. Given x: G/H -» X, we define the //-represen-

H = tf"{point} DH{xl*»\ DH(resG

H(X)) ^ DG{X).

Let the homomorphism

(5.23) Φ G (M; V) : UG(M) -+ Z'2

send [x:G/H^X] to mάG

H{pξά{D{TMχ))®Rx*V), where TMχ is the
tangent space of M at the point x(eH), and (g>R is the pairing defined in
(2.14). Now we obtain a local formula for the Poincare torsion in terms of
the various tangent representations of the components of the fixed point
sets.

Proposition 5.24 (Local formula for Poincarέ torsion).

ΦG(M V)(χG

niy(M, MX)) = pG

ά(M, M{ V).

Proof. In the sequel we do not have to worry about corners and straight-
ening the angle because p p d depends only on the simple homotopy type by
Proposition 3.33. Moreover, we assume V — R for simplicity; the general
case is done similarly. Let N{ and Λ^ be G-manifolds, and let NQ c ΘN{

and NQ C dN2 be submanifolds of codimension 0. Let f:No->N'o be a
G-diffeomorphism and put N := N{ Uf N2 . Then, from the sum formula
(Proposition 3.49), we get

(5.25) ^ % ^ %
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Since the equivariant Euler characteristic is additive in the sense of Luck
[20], we have

(5 26) φ

-φV2)(iv(^2))
We first verify the claim for empty Mχ. We begin with the special case
M = Dξ, where ξ [ B is a (7-vector bundle over a G-manifold X having
precisely one orbit type, say G/H. Then X/G is a manifold, and we use
induction on the number of handles. If X/G is empty the claim is trivial.
Suppose that X is obtained from Y by attaching an equivariant handle:

G/H x Sk~ι x Dd~k > Y

G/H x Dk x Dd~k > X

We may suppose that X is connected, otherwise treat each component
separately. Let an //-representation W be the typical fiber of ζ | X.
Then we obtain a G-pushout:

G xH (Sk~ι x Dd~k x DW) > D£ I Γ

i

By the induction hypothesis the claim is true for Dξ I Y. Because of
(5.25) and (5.26) it suffices to verify the claim for G-manifolds of the
shape G xH (Z x DW) for Z a manifold with trivial //-action. One
easily computes

Ppά(G xH (Z x DW)) = i n d J ( ^ d ( Z x DW))

= mάG

H{pζά{Z) ®R χH(DW) + χH(Z) ®R p"ά{DW))

= χ(Z) mdG

H(p^(DW))

= ΦG(G x^ (Z x /)H^))(χG(G x^ (Z x Z)»F))).

This finishes the proof for the case M - Dξ, Mχ = 0 . Now the claim for
Λfj = 0 follows by induction on the orbit types of M. Namely, choose
H e Iso(Af) such that H c K, K e lso(M) implies H = K. Let v be
the normal bundle of M ( / / ) = G MHjn M. Define Έ := M - m\(Dv).
The induction hypothesis applies to M and Sv, and the considerations
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above apply to Ώv . Since M is M uSv Dv , the assertion follows from
(5.25) and (5.26), provided that Mγ=0.

The claim in general follows from the following relations:

ΦG(M)(χG(M, Mχ))=ΦG(M)(χG(M))-ΦG(Mχ)(χG(Mχ)).
Example 5-27. Suppose that the G-manifold M is modelled upon the

G-representation V, i.e., there is a G-representation V such that for
any x e M the Gx-representations resF and TMχ are linearly Gχ-
isomorphic. This is true for example if all fixed point sets of M are
connected and nonempty. Then the local formula for Poincare torsion
(Proposition 5.24) reduces to

pG

ά(M, Mχ R) = χG(M9 Mχ) Θ R p%{DV).

Let Lef(/(#)) be the Lefschetz index of the map l(g): (Af, Mχ) -* (Af, Mx)
given by multiplication with g e G. Then, in terms of class functions on
G with values in R, we obtain

Γχ(pG

ά(M, Mχ R))(g) = Lef(/(g)) Γχ(pG

ά(DV))(g).

Remark 5.28. In Connolly-Luck [10] a duality formula is established
for a G-homotopy equivalence (/, df): (M, dM) -> (N, dN). There
appears a correction term which depends on the universal Euler character-
istic and the Gχ -representations TMχ for all x e M. It is closely related
first to the local formula for Poincare torsion (Proposition 5.24), and sec-
ond to Proposition 3.33 which states that the difference of the Poincare
torsion is an obstruction for a duality formula for equivariant Whitehead
torsion. The duality formula is important for the proof of the equivariant
π-π-theorem in the simple category (see Dovermann-Rothenberg [12] and
Lϋck-Madsen [22], [23]).

Remark 5.29. The Euler characteristic term in our main Theorem 4.5
may also be interpreted as the index of the deRham complex. This leads
to the following question.

Let P* be an elliptic complex of partial differential operators. Denote
by Δ(P)* the associated Laplacian, which is an elliptic nonnegative selfad-
joint partial differential operator in each dimension, and therefore whose
analytic torsion p9n(A(P)*) can be defined as for the ordinary Laplace
operator. Suppose that the complex restricts on the boundary of M to an
elliptic complex dP* in an appropriate sense. Can one find a more or less
topological invariant pioΛP*) such that the following equation holds?
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If we take P* to be the deRham complex and put p to be p χ, the
above equation just becomes Corollary 5.1.
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