Journal of Differential Geometry

On the quantum expected values of integrable metric forms

John A. Toth

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 52, Number 2 (1999), 327-374.

Dates
First available in Project Euclid: 25 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214425280

Digital Object Identifier
doi:10.4310/jdg/1214425280

Mathematical Reviews number (MathSciNet)
MR1758299

Zentralblatt MATH identifier
0992.53063

Subjects
Primary: 58J40: Pseudodifferential and Fourier integral operators on manifolds [See also 35Sxx]
Secondary: 35P20: Asymptotic distribution of eigenvalues and eigenfunctions 37J35: Completely integrable systems, topological structure of phase space, integration methods 58J15: Relations with hyperfunctions 81Q20: Semiclassical techniques, including WKB and Maslov methods

Citation

Toth, John A. On the quantum expected values of integrable metric forms. J. Differential Geom. 52 (1999), no. 2, 327--374. doi:10.4310/jdg/1214425280. https://projecteuclid.org/euclid.jdg/1214425280


Export citation

References

  • [1] V. I. Arnold, Mathematical methods of classical mechanics, Second Edition, Springer, Berlin, 1987.
  • [2] R. Abraham and J. E. Marsden, Foundations of mechanics, second edition, Reading, MA: Benjamin/Cummings, 1978.
  • [3] M. Abarmowitz and R. Stegun, Handbook of mathematical functions, Dover, New York, 1970.
  • [4] J. Brummelhuis and A. Uribe, A trace formula for Schrödinger operators, Comm. Math. Phys. 136 (1991) 567-584.
  • [5] J. Brummelhuis, T. Paul and A. Uribe, Spectral estimates around a critical level, Duke Math. J. 78 (1995) 477-530.
  • [6] Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique I: concentration microlocale, Comm. in P.D.E. 19 (1994) 1535-1563.
  • [7] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integral-elliptic case, Comment. Math. Helv. 65 (1990) 4-35.
  • [8] J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975) 39-79.
  • [9] J.P. Françoise and V. Guillemin, On the period spectrum of a symplectic mapping, J. Funct. Anal. 115 (1993) 391-418.
  • [10] V. Guillemin, Wave trace invariants, Duke Math. J. 83 (1996) 287-352.
  • [11] V. Guillemin and A. Weinstein, Eigenvalues associated with a closed geodesic, Bull. Amer. Math. Soc. 82 (1976) 92-94.
  • [12] L. Hörmander, The analysis of linear partial differential operators, volume 1, Springer, Berlin, 1983.
  • [13] H. Ito, Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (1989) 412-461.
  • [14] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, J. Funct. Anal. 132 (1995) 192-249.
  • [15] J. Ralston, On the construction of quasimodes associated with stable periodic orbits, Comm. Math. Phys. 51 (1976) 219-242.
  • [16] Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 1612 (1994) 195-213.
  • [17] M. Shubin, Pseudodifferential operators and spectral theory, Springer, Berlin, 1987.
  • [18] J. Sjöstrand, Semi-excited states in nondegenerate potential wells, Asymptotic Anal. 6 (1992) 29-43.
  • [19] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, 1981.
  • [20] J. A. Toth, Various quantum mechanical aspects of quadratic forms, J. Funct. Anal. 130 (1995) 1-42.
  • [21] J. A. Toth, Eigenfunction localization in the quantized rigid body, J. Differential Geom. 43 (4) (1996) 844-858.
  • [22] J. A. Toth, On a class of spherical harmonics associated with rigid body motion, Math. Res. Letters 1 (1994) 203-211.
  • [23] J. Vey, Sur certain systèmes dynamiques separable, Amer. J. Math. 100 (1978) 591-614.
  • [24] S. Vu Ngoc, Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Prépublications de l'Institut Fourier (1998) (preprint).
  • [25] S. Vu Ngoc, Formes normales semi-classique des systèmes complètement intègrable au voisinage d'un point critique de l'application moment, Prépublications de l'Institut Fourier (1997) (preprint).
  • [26] S. Zelditch, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal. 7 (1997) 145-213.
  • [27] S. Zelditch, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal. 8 (1998) 179-217.