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ON T H E Q U A N T U M E X P E C T E D VALUES OF 
I N T E G R A B L E M E T R I C FORMS 

JOHN A. TOTH 

1. Introduction 

Let (Mn,g) be a compact, real-analytic, Riemannian manifold, Po a 
first order, self-adjoint, real-analytic, elliptic pseudodifferential operator 
with principal symbol, 

generating geodesic flow. We will assume that Po is quantum integrable; 
that is, there exist n — 1 first order, jointly elliptic, real-analytic, clas­
sical pseudodifferential operators Pi , . . . ,Pn_i such that, for all i,j = 
0 , l , . . . , n - 1, 

(1) [Pi,Pj] = 0. 

Given the Hamilton vector field, 

n dH d dH d 
H* = E i d^3 dxJ dx3 dÌj 

we denote the associated geodesic flow by exp£S# : C°°(S*M) —> 
C°°(S*M). Suppose 7 is a simple, periodic orbit of expiS# (i.e., a 
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closed geodesic). Under the assumption that the associated linearized 
Poincaré map, P 7 , has eigenvalues of the form e±lS^j = l , . . . ,n — 1 
with 6j rationally independent, one can explicitly construct [15], [11] 
a sequence of L2-normalized functions (the so-called "quasimodes"), 
fa G C°°{M), with 

-/\fa = xkfa + o{k-°°). 

Here, the fa have very sharp localization properties along the configu­
ration space projection, 7r(7), of the geodesic 7 as A& —> 00. When 7 
is unstable, it is well-known that there is no such quasimode construc­
tion available. Nevertheless, the question of whether or not there exist 
actual sequences of eigenfunctions with mass asymptotically accumulat­
ing along 7 seems to depend on the nature of the geodesic flow: In the 
ergodic example of arithmetic surfaces, Rudnick and Sarnak [16] have 
shown that periodic orbits do not support mass in the quasiclassical 
limit. The general ergodic case is still open. On the other hand, it is 
known that in the integrable case, such orbits can and do support mass. 
However, there are few rigorous results (see [6], [20]) along these lines 
and the analysis in each example has been somewhat ad hoc, usually 
depending on separation of appropriate variables and a detailed analysis 
of the corresponding special functions. This approach is unsatisfactory 
since one is often faced with the very difficult problem of studying the 
spectral asymptotics of coupled systems of multiparameter O.D.E. with 
automorphic coefficients. 

The purpose of this paper is to present a more systematic analysis 
in the integrable case using microlocal techniques and in particular, 
quantum Birkhoff normal form (QBNF) (see [10], [24], [26], [27] and 
Section 3). Our main result (see Theorem 1) can be summarized as 
follows: Suppose that the level set 

ZE = {z£ T*M;po(z) -EQ = ... = pn(z) - En = 0} 

contains a finite number of nondegenerate, unstable, periodic geodesies 
71, ...,7fc and that E # is smooth outside a union of tubular neighbour­
hoods of the 7j 's. Roughly speaking, Theorem 1 says that , under a 
joint non-resonance condition (HI) (see below), the bicharacteristics 
7 J ; J = l,...,k always support eigenfunction mass in the semiclassical 
limit. In order to state Theorem 1 more precisely, we will now describe 
the contents of the paper in more detail. 

Section 2 consists of some salient facts on the symplectic geometry of 
periodic orbits (see [1], [9], [10], [26], [27]). Here, we review some basic 
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symplectic linear algebra as well symplectic normal form for quadratic 
Hamiltonians. 

In Section 3, we show that under hypotheses (HI) and (H2) below, 
there exists a convergent joint quantum Birkhoff normal form (Theorem 
3) for the quantum integrals Po , . . . ,P n _ i (see also [6], [24]). To state 
these hypotheses, we introduce some notation here: Let (s,a,y,7]) de­
note the Birkhoff normal coordinates near 7 (see Section 2), where, in 
particular, a = y = r\ = 0 along 7. Let Ih, Ich denote the respective real 
and complex hyperbolic classical actions associated with the Poincaré 
mapping P 7 (see Section 2). We will assume that: 

/ V^po V / h po V /cfepo V / c f epo \ 
Re Ini 

(HI) det • • . jÈO 

\ Va'Pn-l ^ih'Pn-l V / C fep n _i Vjch pn-l ) 
\ Re Im / 

when a = y = 77 = 0, and also, 

(H2) The geodesies 7^; j = l,...,k are forward limit sets for the 
bicharacteristics of the Hamilton vector field, S # , on the variety, £ # . 
That is, for any (x,Ç) G £ # , there is a jj with 1 < j < k such that 
exp£S#(a;,£) —> jj as t —> 00. 

The proof of Theorem 3 will hinge on establishing a convergent clas­
sical Birkhoff normal form near each of the 7j 's (Theorem 2). This will 
follow from a result of Ito [13] (see also Vey [23] and Eliasson [7]) on the 
convergence of classical Birkhoff normal form near a critical point, to­
gether with a result of Françoise-Guillemin [9] (see also Guillemin [10]) 
relating the symplectic data associated with the Poincaré cross section 
to the contact geometry of the mapping cylinder. 

In Section 4, we work out the example of the quantized Euler top 
in detail and show that Theorem 1 applies in this case. We should 
point out that our results apply in many examples, including Liouville 
tori, Clebsch-Gordon spinning tops and geodesic flow on quadrics among 
others. The analogue of Theorem 1 also applies in inhomogeneous ex­
amples such as Neumann oscillators, Lagrange and Kowalevsky tops 
among others. We hope to return to this elsewhere. 

Section 5 is concerned with time asymptotics of the classical geodesic 
flow. This will play a crucial role in the microlocalization problem in 
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the next section. 
In Section 6, we carry out the necessary microlocalization near the 

7 j ' s to enable us to use the quantum Birkhoff normal form construction 
described in Section 3. The microlocalization is accomplished by first 
establishing an a priori mass estimate near the level variety E # (Lemma 
3), and then applying the semiclassical Egorov Theorem. It is in this 
last step that the time asymptotics of Section 5 enters in a pivotal way. 

One is then faced with the problem of explicitly estimating the semi-
classical expected values of various model distributions which arise in 
the Birkhoff construction. This, we do in Section 7, where we treat the 
real hyperbolic case (see also [6]), and Section 8, where the estimates 
for the complex hyperbolic case are given. 

Finally, in Section 9, we prove Theorem 1 below: 

T h e o r e m 1. Let Po, . . . ,P„_i be a real-analytic quantum integrable 
system on a compact, real-analytic Riemannian manifold, M, with Po 
given above. Let E # be a fixed level set 

{(x,0 G T*M;po(x,0 -E0 = ... = p n _ i (x ,£ ) - £ „ _ i = 0}, 

and let 71, ...,7fc C £ # be k non-degenerate, unstable, periodic geodesies 
for the metric form po{x,£) = \/'g%J'(x)^j. Assume moreover, that 
hypotheses (HI) and (H2) are satisfied and that, for convenience, the 
periods are normalized to be 2ir. Then, given H~l G Spec (Po), ipj, an 
L2-normalized joint eigenfunction satisfying 

hPki>j = Ekißj + 0(h)i>j 

and any q G CQ°(T*M), there exist non-negative real numbers a\,..., ak 

with 
k 

such that, 

k 2-K 

(OpH(q)^,^) = (27T)-1 V a , / g(7 i(t))dt + 0 ( | l o g n | - 1 / 2 ) . 

R e m a r k s . 1) It follows from Theorem 1 that in many integrable 
examples including Euler tops and geodesic flow on quadrics, one can 
find unstable periodic bicharacteristics that support eigenfunction mass 
(see Section 5). However, if the singularities of the level variety are 
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more complicated than those permitted in hypotheses (HI) and (H2), 
it is unclear whether this accumulation phenomenon persists. This is a 
very interesting question which we hope to address elsewhere. 

2) Although we have stated Theorem 1 for periodic orbits, the result 
holds equally well when the limit sets are points. 

A c k n o w l e d g m e n t s 

I wish to express my thanks to Victor Guillemin for many inspiring 
conversations and in particular, for calling my attention to the conver­
gence results [7], [13], [23] for Birkhoff normal form. I am also indebted 
to Alex Uribe and Steve Zelditch for helpful comments and discussions. 

2. S o m e symplec t i c g e o m e t r y 

It will be useful to review some symplectic geometry here which will 
be used in the implementation of Birkhoff normal form. The treat­
ment here will be rather brief; we refer the reader to Guillemin [10] and 
Zelditch [26], [27] for further details. In the first part, we will follow 
quite closely the exposition in [27] Section 1. 

Let (Mn,g) be a compact, Riemannian manifold and 7 a closed 
geodesic of g. In the case of such a metric form, there is a rather 
explicit recipe for putt ing H = y y ^ ö m t ° Birkhoff normal form in 
a tubular neighbourhood of 7. To describe this procedure, following 
Zelditch [27, Section 1.1] we denote the space of real orthogonal Jacobi 
fields along 7 by J^~. Then, Y G J^~ if and only if, 

d D2 ( d \ d 

(2) si-Y) = 0mA-Y + R(-YJ-=0. 

There is a natural symplectic structure on J^ given by 

(3) u,(X, Y) = g (x, £ y ) - g ( £ x , Y ) . 

The linearized Poincaré map P 7 is just the symplectic mapping on 
(J^OJ) defined by P7Y(t) := Y(t + I /7) , where Z/7 denotes the length 
of 7. By complexification, we get an induced complex linear map, 
P^ G Sp(JL:~f x C,OJIC). Since it is symplectic (see [1]), its eigenvalues 
occur either as complex conjugates on the unit circle (i.e., the elliptic 
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subspace), real pairs A, A - 1 ; A G M (i.e., the real hyperbolic subspace), 
or complex quadruples of the form p,p~l,~p,p_1; |p| 7̂  1 (i.e., the loxo-
dromic subspace). We will henceforth make the usual non-degeneracy 
assumption on 7; that is, 

(4) p™1 • • • p™n = 1 =>• nu = 0 (Vi,nii G N). 

Since (4) implies that the eigenvalues are in particular, simple, there 
exists a decomposition: 

where, J^ J"/1, J^h denote the elliptic, real hyperbolic and complex hy­

perbolic subspaces. Here, J^ is characterized by the condition: 

cosa sin a 
7 T - s i n « c o s a 

for some a G ffi — 0. The real hyperbolic subspace J^ is defined by the 
condition that 

' p 0 
P, i\Ji} 1 0 p-1 

for some p G M. Finally, the loxodromic subspace J"^1 is a four-
dimensional real symplectic subspace 

where p = e~^+iu G C - JR with / i , i / £ l , and 

7l j 7
c h (p ) 

cos v sin f 
— sin v cos ẑ  

Following Zelditch [26], [27], we say that the geodesic 7 has type (p, q, c) 
if it has p pairs of stable eigenvalues, {e î a , e _ î a } , g pairs of real inverse 
eigenvalues, {e A , e _ A } and c quadruples of totally complex eigenvalues, 
{e ^ }. Before stating the variant of the classical Birkhoff normal 
form about 7, we recall certain salient facts about the symplectic geom­
etry of quadratic Hamiltonians (see [1] and [27] Section 1.1 c). 

Let (M2n, co) be the symplectic vector space with symplectic coordi­
nates z = (x\,x<2-, ~;Xn,Çi,...,Çn) and symplectic form u> = X)?=i dxj A 
d^j. A quadratic Hamiltonian is by definition, of the form: 

(6) H(x,0 = (Az,z)=u;(JAziz), 
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where, J = . Since JA is a 2n x In symplectic matrix, its 

spectrum decomposes into purely imaginary pairs (ia, —ia) (the elliptic 
set), real pairs (A, —A) and complex quadruples (±/j,±iv). By a theorem 
of Williamson, one can characterize the normal form of the functions 
H(x, £) up to symplectic equivalence (see [1]). The general case is rather 
complicated to state since it involves the Jordan normal form of JA, but 
under the nondegeneracy assumption (4), this result says that there exist 
symplectic coordinates (yi, . . . , yn, r]i,..., r]n) in terms of which, 

V p+q+l 

H(y,v)=Y,ij(yj,Vj)+ J2 tfiyj'Vj) 

^ ' p+q+2c+2 

+ J2 tfiyjiyj+iiVjiVj+i)-
j=p+q+2 

The classical action operators I ? , / ^ , I c / i are given by: 

(8) Ij(yj,vj) = 2a3(yj+rë), 

(9) ij(yj,rìj) = tyj'nj, 

(10) ijh(yj>yj+uvj,vj+i) =p(yjVj + yj+iVj+i) 

+ HyjVj+i -yj+iVj)-

The corresponding h-Weyl quantizations, which we will refer to as the 
"model operators" are then just 

( i i ) / ; = ì a J - ( n 2 z > 2 . + j / 2 ) ) 

(12) î} = lHKDy.yj + hyjDyj), 

(13) if = -ß{hrjDT] + hDr.rj) + vhDe 
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Here, we have used (VJ,0J) to denote polar variables in the (yj,yJ+i) 
plane. It will also be convenient to introduce the following notation: 

(14) î% = l-iih(rjDr3 + Dr.rj) and îfIm = vhDg.. 

Finally, (see also [27]) note that, if one extends the classical action 
functions Ie,I ,1 to T*C" in the natural way, each of them may be 
written in the form 

(15) I(z,0=$lszC 

for s G C and (z, Ç) symplectically dual complex linear coordinates. In 
the elliptic case, z = y\ + ir)i,Ç = y\ — ir]i,s = a, in the hyperbolic 
case z = yi,Ç = 7]i,s = X and, in the loxodromic case, s = ß + iu, z = 

y\ + iy2,C = vi -im-

3. B irkhoff normal form 

In the course of the proof of Theorem 1, we will have to estab­
lish the existence of a sequence of joint eigenfunctions ipj which are 
microlocally of a specific form when expressed in terms of the model 
eigenfunctions (see Proposition 5). This will be done by establishing a 
convergent, joint, semiclassical quantum Birkhoff normal form (QBNF) 
for the first-order operators Po, ...,P„_i under the hypotheses (HI) and 
(H2). We should point out that a similar normal form has recently been 
obtained by San Vu Ngoc [24], [25]. However, our normal form holds in 
a neighbourhood of a closed geodesic, and since we use a classical result 
of Ito[13], the integrals in involutional, ..,pn_i can have degenerate be­
haviour along 7, provided (H2) is satisfied and all integrals are taken 
to be real-analytic. In this section, it will be convenient to work with 
the operators HQ = hPo — Eo,...,Hn-i = hPn-\ — En_\ rather than 
Po, ...,Pn-\. When there the context is clear, we shall also denote the 
respective semiclassical principal symbols by Ho, ...,Hn-i. The start­
ing point here is the existence of a convergent classical Birkhoff normal 
form (CBNF) which is valid in a sufficiently small tubular neighbour­
hood Q x 7 of the geodesic, 7. This result will follow from a theorem of 
Françoise and Guillemin [9] (see also Guillemin [10]) together with a re­
sult of Ito [13] on the convergence of canonical Birkhoff transformation 
around a fixed point in the real-analytic, integrable case. With regards 
to the last result, we should also point out that related results have been 
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proved in the analytic case by Russman [15], Vey [23] and in the C°° 
setting by Eliasson [7]. 

T h e o r e m 2. Let HQ, HI, ..., Hn-\ be real-analytic integrals in in­
volution and 7 be a closed, non-degenerate unstable geodesic for po = 
9%^ÌiÌj- Then, for j = 0 ,1 , ...,n — 1, there exists a neighbourhood of the 
origin U G W1, fj G 0^(11), and a real-analytic symplectic diffeomor-
phism K : fi x 7 -^ fio x S 1 such that: 

K*H3=f3(aj\lch). 

Here, to simplify notation, we have written Ih = (L^,...,I^) and Ich = 

{IqXi-, •••ilqXc+i)- The induced symplectic, modified Fermi coordinates 

(see [27]) on Oo x S 1 will be denoted by (s,o,y,rj). 

Proof. We fix an unstable geodesic 7j and to simplify the writing 
somewhat, we will drop the subscript j in the following. Let 

M={zeT*M;H0(z) =0} 

and take as our contact form, a, the restriction to M of the canonical 
one-form ^ • Çjdxj on T*M — 0. Let W C M be an open submanifold 
that is transversal to the flow exp i S # 0 at po G 7. Then, there exists an 
open submanifold Wo C W such that : 

(16) / : (W0,po) — • (W,po). 

Here, / is the Poincaré map corresponding to the flow exp t S ^ . By a 
well-known result of Poincaré ([9], [10]), 

(17) f*a — a = d(p, 

where (f) denotes the "first return time" function. In particular, / is 
symplectic with respect to the symplectic form LO = da, with an unstable 
fixed point at po. Let 1 : W —> M denote the inclusion map. Then, 
since {Hi,Hj} = 0, it follows that : 

(18) Hk(f(z))=Hk(z) 

for all z G W and k = l , . . . ,n — 1. Since po is a non-resonant fixed 
point of / , by a theorem of Ito [13], there exists a convergent, real-
analytic, canonical mapping (f> : (Wo,Q) —> (Wo, Q) under which, the 
Poincaré mapping, / , is put into classical Birkhoff normal form. A 
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precise statement of this theorem is most easily given by complexifying 
the Hamiltonian, HQ, as well as W and then imposing a reality condition 
[13]. Denote the complex, canonical coordinates on Wc by (z,() and 
the holomorphic continuation of f{y,rj) by f{z,Ç). Then, the above 
result of Ito says that there exist a function, H (LO), holomorphic in 
the variables u>o = zoÇo,...,u)n-i = zn-iÇn-i, and a complex, canonical 
mapping </> : (W^, 0^) ->• (Ty0

c ,Q c) , s u c h t h a t 

(19) 4>f4>-Hz,C) = (zeMdcoH),ÇeM-dcoH)). 

The identity in (19) implies that there is a corresponding convergent 
real Birkhoff normal form for f(y,i]). However, to state this one must 
decompose Wo into hyperbolic and loxodromic blocks (see Section 2): If 
(yi,i]i) denotes symplectic dual coordinates on a hyperbolic block, (19) 
implies that there exists a real-analytic, canonical map 4> acting on this 
block, with the property that: 

faf^iViiVi) 
e x p ( d / h # ) 0 

0 exp(—djhH) 
2/1 

»7i 

where, H = H(Ih,I'^l
e,Ij^n). Finally, when the symplectic 4-plane 

(yi,y2,i]iìrì2) is loxodromic, there exists 4>ch such that : 

0 c / i / t ì ( y i , y 2 , r ? i , % ) 

/ 

V 

e ß cos v 
—e~ß sinẑ  

0 
0 

e ß sin v 
e~ßcos v 

0 
0 

0 
0 

eß cos v 
—eß sinẑ  

0 \ 
0 

eß sin v 
eß cos v ) 

( V i \ 
V2 

Vi 

\ V2 ) 

Here, we have written, ß = dJChH and v = — dJCh H. Now, define 
Re Im 

(20) T(I\I&,I?J = T(0) + H(l\l^l?m). 

The function r plays an important role in determining the contact 
manifold (M,a) from the symplectic data (W, Î Î , / ) . Namely, recall 
that by a theorem of Guillemin-Françoise [9], [10], there exists a contact 
isomorphism mapping (M,a) onto (R2n x S 1 , ^ ) , where, 

(21) «o = r(I)ds + i]dy. 
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such that, 

(22) 

and 

(23) i>*H0 = h(ihJcL 

Here, we have denoted the angle variable on S 1 by 2ns and, by a slight 
abuse of notation, I = (Ih, Ich). Note that , following the usual conven­
tion, we will also denote the action variables near regular Lagrangian 
tori by I = (7"i,...,I„) and so, the two cases should not be confused. 
Following Guillemin ([10, Section 2]), one can show that there exists an 
extension (by homogeneity) of this contact isomorphism to a locally-
defined canonical mapping 

tp-1 : n X7—>n 0 x s 1 

ip*a = rjdy + rds 

Ifm, a)=a + \Ih + ßI& + vlfm + 0 ( | / | 2 ) . 

This completes the first part of the proposition. 
To show that H^k = l , . . . ,n — 1 must simultaneously also be in 

normal form, we simply use the analyticity of the H^s together with fact 
that {H0,Hk} = 0. Since T*Mn x T*SX - 0 splits into complementary 
symplectic subspaces corresponding to the action functions Ih,Ich, it 
suffices to assume that (y, rj) corresponds to a single summand. To 
begin, we assume that this summand is real-hyperbolic. Then, since H^ 
is assumed to be analytic, make a power series development for H^ up 
to total order 2 in (y,rj,a) and denote the resulting polynomial by H%. 
Therefore, K*H% equals 

, . fo(sh + h(s)y + Î2{s)ri + h{s)vn + h(s)y2 

+h(sW + h(s)yo + h{s)r,a + h{s)a2. 

As a consequence of the error term ö{y2rj2) in (23), it follows that : 

(25) {a + Xy71,H
2(s,a,y,71)} = 0. 

By matching the different coefficients of the various monomials in y, rj, a, 
we get: 

dsfo(s) = 0 dsMs) + \h(s) = 0 dsh-Xh(s)=0 
ds.f3 = 0 ds.U(s) + 2X.U(s) = 0 dsf5-2X.f5(s) = 0 

dsh(s) + XMs) = 0 dsMs) - Xf7(s) = 0, 
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and dsf$(s) = 0. However, all the / j ' s are required to be 27r-periodic 
functions in the s variable and so, this forces /o = const., fi = 0, f% = 
0 , / 3 = const., fi = f5 = / 6 = f7 = 0, / 8 = const.. Therefore, # f is 
resonant. 

We now repeat the above argument and apply induction: To simplify 
the writing, we denote the maximum total order of a polynomial in the 
variables (a,y,n) by ord. Since {Ho,Hk — H2} = 0, it follows that: 

{a + Xyn, Hk - H2
k) + {e(y, n, <r),Hk - H2

k) = 0. 

Now, 

ord{e(y,r],a),Hk - Hk} > 5 and ord{a + \yn,Hl + i ï f + ...} > 5. 

Therefore, since 
ord{a + XyrhHl + Hl}<4, 

it follows that : 

{a + \yn,Hl + Ht} = 0. 

Finally, repeat the above argument with i / | replaced by i / | + Rk and 
apply induction. 

Suppose now that the summand is complex hyperbolic and denote 
the symplectic coordinates corresponding to the summand in question 
by (yiìy2,i]iìrì2)- By introducing the complex variables z = y\ + iyi 
and n = r]i — ir]2, we can write 

1 % 
TRe = 2 (ZTi + ^ ) a l l d TIm = 2 ( ^ - zri)-

Repeating the argument for the real-hyperbolic case, we write 

« * # * = E faß-rs(s,a)zaz^ff. 

a+ß+~/+ö<2 

One readily shows as in (25) that /Q/g75 = 0 provided either a ^ 7 or 
ß ^ ô and moreover, faßaß = faßaß{o). The general case follows by 
applying the above argument successively to each summand. q.e.d. 

Given hypothesis (HI), it follows by the Inverse Function Theorem 
that locally near a = y = n = 0, 

(9fii a =9o(Ho,---,Hn-i),I1 = gi(H0,...,Hn_i),...,Ifmn_1 

=9n-l{Ho, ...,-ffn-l) 
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where, for j = 0,1,. . . , n—1, gj are locally-defined, real-analytic functions 
with Qj(0,..., 0) = 0. Let fîi x 71,..., Q ̂  x 7̂ . denote tubular neighbour­
hoods of the geodesies, 71, ...,7fc respectively, Moreover, we assume that 
they are sufficiently small, so the identity (26) holds and the CBNF 
in Theorem 2 is valid in these neighbourhoods. Let Xu~->Xk denote 
cutoff functions supported in Cl\ x 71,...,0^. x 7̂ . respectively. In the 
following, for notational simplicity, we assume that the Maslov indices 
m{ll)'J = l)-"& are all zero. Otherwise, the exponentials ems in the 

Fourier series expansions below are to be replaced by e%{-n+ 4 >s. We 
are now in a position to prove the quantum analogue of Theorem 2: 

Theorem 3. Suppose hypothesis (HI) is satisfied. Then, for j = 
0, ...,n — 1 and I = 1, ...,k, there exist a microlocally unitary h-Fourier 
integral operator, Fi : CQ°(QI x 71) —> CQ°(ÇÏO X § ' ) , and a locally 
analytic symbol gUx\, ...,xn;H) ~ ^k gljk{x\, ...,xn)h

k such that, 

WxiWg^Ho, ...,if„_i;n)JF |-
1 -Q,-)!! = 0(h°°). 

Here Q\ = —ihds and 

J îh{yjihDy]) 2<j<q+l, 
^ îch(Vj, HDy.) q + 2<j<q + 2c + 2, 

where, Ih
iI

ch are the microlocal action operators given in (11)-(13) and 
q + 2c + 2 = n-l. 

Proof. For simplicity, we denote microlocal equivalence on Q by = Q 
and will use H-Weyl quantizations since we need only work microlocally 
near a fixed 7. To simplify the writing we will drop the index I. The 
ansatz is a variant of that given in [6] (see also [24]) with some modifi­
cations. To simplify the writing somewhat, we first assume that there 
exist two commuting operators Q\ = —ihds and Q2 = —i^(ydy — dyy) 
corresponding to a single real hyperbolic summand. Then, by the CBNF 
result above together with the semiclassical Egorov theorem, there exists 
a microlocally unitary H-Fourier integral operator, FQ, with the property 
that: 

(27) FogiiHo^jFo1 = n -ihds + ThRu 

(28) Füg2(Hü,Hl)F^1 = -i^(ydy - dyy) + hR2, 
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where, Rj G Opti(S0, °°) for j = 1,2. The proof proceeds by an induc­
tive argument: Define 

Fk+l:=Fk(Id + hkVk) 

with Vk G Opfl{S0,~°°) for k > 0. Here, we say that a(s,a,y,r];h) G 
C°°(R" x S1) is in Sm>k{Rn x S1) if 

|9«3fa(S ,a,j/,»7;ft)| < Caßh
m(l + |y| + |T?| + \a\)k-\a\-W, 

and J4 denotes the corresponding h-Weyl quantization. Suppose that 
gkj and Fk have been constructed so that 

(29) Fk9kj(H0,m-h^1 = n Q,- + hkRkJ, 

(30) F f e - i V i = ö ( ^ ) , 

(31) gkj-gk-1j = ö{hk-1). 

Then, the (k + 1) — st step involves constructing a pseudodifferential 
operator, Vfc G Op^S0'-00), and symbols, gk+ij;j = 1,2, with the 
property that : 

Fk+i9k+i,j(Ho, Hi; H)Fk+1 =Q —ihds + h + Rk+i,j-

Let rfcj be the semiclassical principal symbol of Rk,j- By Theorem 2, 
there exist real analytic functions ekj(a,y,r]) such that: 

(32) «^o \a,ßr/ J 

+ E <W%V*7-

Assume now that the k-th step of the induction has been verified. Define 

(33) gk+1j(H0,H1ih)=gkj(H0,H1-,h)-hkek.j(H1,H2). 

Then, by the symbolic calculus, 

(34) F-^gk+ld(H0, HVlh)Fk+l = Qj + hkSkd + hk+1Rk+hj, 

where, skj = rkj — ekj — {qj,vk}. Therefore, we must solve the system 
of homological equations: 

(35) -rki + eki = dsvki 
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(36) -rk,2 + efc,2 = (ydy - rjdv)vk. 

To see that this system can be locally solved for vk, simply note that 
since [HQ, HI] = 0, it follows from the symbolic calculus that : 

(37) (ydy - r/dv)(rk,i - ek,i) = ds(rkj2 - ekß). 

Written out explicitly, this consistency condition is: 

(38) 

E M Ec^yaA7 )ems 

= E c1
aß7(0)(a-ß)yar1f^ 

j,a^ß 

+E EcU(«-/%vve^ 
fe^O \aß~f 

Comparing coeÆcients of the Fourier series in (38) yields 

(39) cl
aßl(Q) = 0 and (a - ß)cl

aßl(n) = inc2
aß^(n) 

for all n / 0 . Since rkj\ — ekj\ has no zeroth Fourier coeÆcient and by 
(39), cl

aotl(n) = 0 for all n ^ 0, it follows that rk,i — ek,2 contains no 
resonant terms of the form yai]a. Thus the systems in (35) and (36) 
can indeed be solved by Fourier series, and the inductive step has been 
proved. 

Suppose now that we are in the loxodromic case. Consequently, 
we now assume that there are three commuting operators HQ,HI,H2 

corresponding to a single complex hyperbolic summand with model op­
erators: 

Qi = —ihds, Q2 = ICRei Q3 = lim-

Note that , if we introduce the complex variables z = y\ + iy<2 and 77 = 
771 — ir]2, then 

(40) J 

and the corresponding Hamilton vector fields are Ec^e = 9t(zdz — r]dv) 
and S j ^ = — iQ(zdz — rjdn). Now, just as in the real hyperbolic case 



342 JOHN A. T O T H 

above, we make Fourier series decompositions in s in all symbols and 
replace the coordinates yi,y2,r]i,ri2 with z,~z, 17,17. The consistency re­
lations analogous to (37) are: 

(41) ds(r2,k -e2,fe) = -i{zdz - r]dn -~zdt + rjdTj)(rljk -e i ; f e ) , 

(42) ds(r3yk -e3 ; f c) = (zdz - r]dn + zdz-r]dTJ)(rijk -elyk), 

(43) 
- i{zdz - r]dn - zdj + V^rf){n,k ~ e^k) 

= (zdz -r/dv + zdz-rjdf})(r2,k - e2,k). 

The relevant system of equations for vk is: 

(44) dsvk = - r M + e M , 

(45) (zdz - r/dv + zdz- rjdfj)vk = -rkß + e2,k, 

(46) -i{zdz - r/dv -~zdz+ T}d^)vk = -rky3 + efej3. 

Note that the Hamilton vector fields Ec£e and S | ^ preserve monomials 
of the form 

caßlz
a^ßrpT)Æ. 

In fact, a direct computation gives: 

(47) ESte(zazV»Æ) = {a-l + ß- 6)(zazß^rÆ), 

(48) Ejh
m(zalß^rÆ) = -i(a - 7 - ß + 8)(zazßri"

/rÆ). 

The first two consistency equations (41) and (42) ensure that the nonzero 
Fourier coefficients in the expansion of — rk}2 + ekj2 and — rk^ + ekß do 
not contain resonant terms of the form za~z"rflrÆ, where a—7+/3—8 = 0 
and a — 7 — ß + ö = 0 respectively. Thus, the system of equations (44)-
(46) can be solved in the case of non-zero Fourier coefficients. Note that 
equations (41) and (42) also imply that the zeroth Fourier coefficient of 
~rk 1 + ek 1 c a n only contain terms of the form za~zßrf'rÆ where both 
equations a — 7+/3 — 8 = 0 and a — 7 — ß+ö = 0 are satisfied. Therefore, 
the zeroth Fourier coefficient of — rk i + ek \ is a sum of terms of the form 

(49) caßKzaTi
az^rf<7K. 
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However, by (40), zr\ = Ijfó + ilf^ and ~zrj = lc^e — ilfl
m and so, by 

Theorem 2, we can choose ei^(i?o,-f^i,-f^2) to ensure that no terms of 
the form (49) appear in the zeroth Fourier coefficient of —v%\-\-e%\. The 
arguments for the other terms — r ^ + &k,2 and —r3^ + e ^ are similar 
and finally, the general case follows by repeating the above arguments 
for all the real and complex hyperbolic summands. Clearly, the above 
argument can also be carried out for elliptic summands, but this will 
not concern us here. q.e.d. 

4. An example 

In [21], we showed that the geodesic corresponding to rotation about 
the middle-length inertial axis supports eigenfunction mass by explicit 
separation of variables and an analysis of the resulting special functions. 
The purpose of this section is to show that [21] emerges simply as a 
special case of Theorem 1. 

Recall, the Euler top is governed by a left-invariant Hamiltonian on 
T*SO(3) associated with a rigid body with distinct moments of inertia 
0 < «i < «2 < «3 (see [1]). Let E\^E2,E3 denote the standard basis of 
the Lie algebra so(3) corresponding to the vectors ei,e2,e3 in M3. The 
associated left-invariant vector fields, Li,L2,L3 are defined by 

Li(f)(x) = ±{f(xexptEi)}\t=0. 

One immediately verifies the commutation relations, 

(50) [Li,L2] = L3, [L2,L3] = Lu [L3,£i] = L2. 

Let e = (0,0,1) G M3 and for x G 50(3), define 

(51) qi(x) = (xei,e). 

The quantum Euler top is governed by the partial differential operators: 

3 3 

(52) P0 = J2»jLl Pi = ZULï> P* = Y,VLr 

Note that the pairwise commutators [Pi,Pj] all vanish for i,j = 0,1,2 
and the quantum Hamiltonian is the left-invariant Laplacian, PQ, on 
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SO(3). We denote the principal symbols of the operators Li,L2,L3 by 
hihih respectively. In this case, the classical Euler equations are: 

(53) — =(a 3 - a2)l2l3, -77 = («l - a3)hh, —- = (a2 - cxi)hl2, 
at at at 

(54) —- =a3l3q2 - a2l2q3, —rr = otihq2 - a3l3qi, 
at at 

dqi dq2 

dt 
dqs , , 
— =a2l2qi - OL\l\q2. dt 

Consider the following parametrized submanifold of T*SO(3): 

T(t) = {(l(t),q(t));qi(t) = cosa2t,q3(t) = sin a2t, 

q2(t)=h(t)=l3(t)=0,l2(t) = l}. 

Since we will eventually need to compute Poincaré maps, we write down 
the first variation of the Euler system in (53) and (54) along T(t). In 
particular, 

(KK\ d 6 i l l \xi dô12 n dôls l \xi 
(56) — — = («3-02)0 /3 , —7— = 0, — — = (a2 - «1)0/1, 

at at dt 
(57) —-— = aiòli sin a2t — a3öl3 cos a2t. 

Therefore, from (56) and (57) it follows that the map P 7 := dexpTSp o 

restricted to the span of h(t), l2(t), l3(t), q2(t), oli(t), Sl2(t), Sl3(t), 8q2(t) 
where T = 2-K/O>2, is of the form: 

P - ( eTA ° 
7 ~ B Id 

Hence, P 7 has 1 as a double eigenvalue and the other eigenvalues A 
are determined by solving the characteristic equation 

(58) det(eTA) - trace(eTA)A + A2 = 0. 

However, since 

TA= ( 0 2ira2-
1{a3 - a2) 

1-KO^ (a2 — a.\) 0 

it follows that det(eTA) = 1 and that 

OO A 

XJ 

(59) trace(eTA) = 2 ^ 
(2j)! 
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where, x = 4-7r2a2 («3 — «2)(«2 — ot\). Therefore, 

A =cosh I \J2-Ka2 (ct3 — «2X02 ~~ a i ) ) 

(60) 1 
± sinh I y 2ira2 («3 — 02X02 — « l ) • 

Thus, the eigenvalues of P 7 are of the form 1,1, A, A - 1 where A is given 
by (60). It turns out that the degenerate subspace corresponding to 1,1 
can be dispensed with by performing reduction: Recall, the set 

(6i) o0 = {(?, 0 ; QÏ + ê + 4 = 1. ?i*i + «2*2 + q3h = 0} = T * § 2 

can be naturally identified with the null orbit of the left action of S0(2) 
on SO(3), where we consider S0(2) C SO(3) as an upper 2 x 2 sub-
matrix. It is clear that the submanifold, T(t) descends to a periodic 
geodesic, 7(f), in the reduced system, where the reduced Hamiltonian 
H = pi and the integral in involution p2 are given by the expressions: 

(62) pt =a3(xiÇ2 - x2Çi)2 + a2(xiÇ3 - x3Çi)2 + «1(3:3^2 - x2^3)
2', 

(63) p2 =(xi& - x2^i)2 + (xi£3 - X3Ç1)2 + (2:3^2 - x2Ç3)
2. 

Here, we identify T*S2 with the set of points 

{ M E M 6 ; \x\ = 1 , ^ 1 + x2%2 + x3& = 0}. 

It is not hard to see that [20], [21] the corresponding quantum Hamil­
tonian, P i , is a second order, elliptic partial differential operator that 
is the radial part of a left-invariant Laplacian on 5 0 ( 3 ) . The quantum 
commutant is just the standard constant curvature Laplacian on §2 ; 
that is, P2 = —A. Without loss of generality, we suppose «2 = 1 and 
consider the level set, 

(64) T.E = {(x,0 G T*S2;Pl(x,0 - l=p2(x,0 - 1 = 0}. 

L e m m a 1. The curve, 

7(t) = {x2(t) = &(*) = 0 ,x i ( t ) = -&(<) = cost, 

x3(t) = £ i ( i ) = - s i n t ; 0 < t < 2n} 

is a joint geodesic of pi,p2 which is real-hyperbolic for pi and satisfies 
the hypotheses of Theorem 1. 

file:///J2-Ka2
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Proof. The result follows from the computations in (58)-(60), tak­
ing into account that the 1,1 subspace disappears upon reduction. In 
particular, the eigenvalues of the Poincaré map of p\ are A, A - 1 , where 
A is given in (60). As far as p% is concerned, it is just the unit constant 
curvature metric form on S 2 and so, its Poincaré map has eigenvalues 
1,1. The end result is that in terms of modified Fermi coordinates 

(65) pi - 1 = o + Xyr] + ..., 

(66) p2-l = a + yr) + ..., 

where, the dots indicate terms which are of total order at least three in 
(y, 77, a). Therefore, when y = r] = a = 0, 

detf!̂ 1 yì=l-A,Éfl. 
Vo-P2 Vy7iP2 

Thus, hypothesis (HI) is verified. Finally, it is not difficult to show that 
(H2) is also satisfied by constructing the action-angle variables explicitly 
(see [21]). The lemma follows. q.e.d. 

By a similar argument, it can be shown that the middle-length axial 
ellipse on a triaxial ellipsoid also satisfies the hypotheses of Theorem 
1. Also, one can generalize the argument above to higher dimensions; 
i.e., to SO(n) for arbitrary n and get many examples of unstable orbits 
that satisfy the hypotheses of Theorem 1. In fact, even inhomogeneous 
examples such as the quantum Lagrange top fall under this rubric. Note 
that , when the angular momentum of the Lagrange top is below a certain 
threshold, the periodic geodesic in T*SO(3) corresponding to simple 
nutation turns out to be complex hyperbolic (see [7]). One can show 
that Theorem I also applies in this case. We hope to return to some of 
these examples elsewhere. 

5. A s y m p t o t i c propert ies of t h e classical flow 

Let Mn be a compact, Riemannian manifold and 

be the Hamiltonian function for geodesic flow. Suppose there exist C°° 
functions pi, ...,pn-i with the property that : 

(67) iPk,Pl} = 0 
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dt 

dt 

= o, 
dH 

w3 

for all k,l = 0, l,...,n — 1. Assume moreover, that the differentials 
dpo,...,dpn-i are linearly independent almost everywhere with respect 
to Liouville measure on T*M. In equation (67), the Poisson bracket is 
taken with respect to the canonical symplectic form on T*M. By a theo­
rem of Arnol'd, for regular energy levels EQ, ..., En_\, there exist canoni­
cal coordinates (I\, ...,In,9i,...,9n) (action-angle coordinates) near each 
connected component of TE = {(%,€) G T*M;po(x,£) — E\ = ... = 
pn-i(x,Ç) — En = 0}. Moreover, each component is an n-dimensional 
torus and locally H = H(I\, ...,In). Thus, in terms of (1,0), the equa­
tions for the geodesic flow on TE are given by: 

(68) 

(69) 

In particular, the conditionally periodic flow on such a torus in linearized 
in the coordinates (1,9). However, generically there exist exceptional 
level varieties, TE, which are singular. Moreover, there are no action-
angle variables near E and thus, the classical flow expiS# is much more 
complicated. These singular varieties are precisely the objects of interest 
here. 

Let 7iU...U7fc be a collection of A;, non-degenerate, unstable, periodic 
geodesies all contained in the level variety 

TE = {(x,0 G T*M;p0(x,0 - E0 = ... = pn.1(x,0 - En_x = 0}. 

Note that, by homogeneity considerations, there is no loss of generality 
in taking EQ = 1. Recall, Q\ x 7^,...,fì^ x 7^ are arbitrarily small, 
but fixed tubular neighbourhoods of the geodesies 71,..., 7^ respectively. 
Our objective here is to discuss a simple criterion for analyzing the long­
time flow on Y>E and to give a suÆcient condition to determine when 
hypothesis (H2) is satisfied: 

Lemma 2. Let U\,.., Um be the connected components of the com­
plement, TIE — Uj^j x 7j; where for each j;l < j < k, 77 is an unsta­
ble, nondegenerate periodic geodesic. Suppose that there exist symplec­
tic Darboux coordinates (x\ , ...,xn ,^[ , ...,£n ) in o> neighbourhood of 
each component, Uk, and that H\uk = H(Ç[ , ...,£n ) in this neighbour­
hood with Vçjif 7̂  0. Then, for each z G TE there exists some 77 such 
that: 

eyLptEff(z) —> 7j as t —> 00. 
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Thus, in particular, (H2) is satisfied. 

Proof. Without loss of generality, we assume that there is a single 
connected component, U\, and will drop the superscript in the Darboux 
coordinates. By the Smale theorem, there exist transversal, open man­
ifolds Ws(7i), Wu(^i) defined near 71 such that Ws(^\) n VF«(71) = 
7j. Moreover, Ws and Wu are both invariant under the flow with 
eyLptEn(z) —> 71 for z G Ws (resp. Wu) when t —> 00 (resp. —00). 
It is not hard to show that Ws and Wu are both Lagrangian mani­
folds where for each m G 71, Tm(Ws) (resp. Trn(Wu)) is the sum of 
eigenspaces of P7 l corresponding to eigenvalues of modulus < 1 (resp. 
> 1). Ws("Yi) and TV«(71) are commonly referred to as the respective 
stable and unstable manifolds of 71, where, 

(70) n1x11nzE = n1x11n{wsuwu). 

Suppose now that the lemma is false; that is, there exists z G £ # 
such that expiS#(z) does not converge to the geodesic 71. We now 
show that this leads to a contradiction by constructing a very simple 
Liapunov function on the complement U\: Indeed, consider the function 

(71) g(x,0=x1. 

By assumption, g(x,£) is a well-defined, smooth function on U\, with 
the property that: 

(72) {£,#(£)} = _ ^ 0 

on U\. To simplify the notation a little bit, we will denote the flow 
expiS# simply by fy- Fix z G Ui and consider the integral, 

(73) It(z):= J j-fig(z)ds. 

Clearly, 

(74) It(z) = [ {g, H}(exp sEH(z)) ds. 
o 

Since we are assuming the flow does not converge to a geodesic, it must 
never reach a stable manifold, Ws(^j). As a consequence, the flow either 
stays in the complement U\ or intersects the unstable manifold, Wu. 
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Suppose that the latter scenario holds and that 4>T(Z) G Wu(^j) for 
some 7 j . Then, there exist constants ci,C2 > 0 such that: 

| ^ 7 ; , < M * ) ) | t = r > c i e < * l T l , 

where d(, ) denotes a distance function for some Riemannian metric 
on T*M. Thus, for s > T, d(~fj,(f)s(z)) > d{^j,4>T{z)) and so, the flow 
reenters the complement U\. As a consequence, the function g continues 
to be well-defined and in particular, (72) is satisfied. Therefore, it then 
follows that for a l i i > 0 

75 It(z) = — • / ds = — -t. 
o£i o o£i 

On the other hand, (73) together with the compactness of E # implies 
that: 

(76) It(z) = g(eW tEH(z)) - g(z) = 0 (1 ) 

uniformly in z G U\ as t —> oo. Clearly, (76) contradicts (75) and the 
lemma follows. q.e.d. 

6. Microlocal izat ion near 7^ 

Let ipj be an L2-normalized joint eigenfunction of HPo,..., hPn-\ cor­
responding to an eigenvalues Xj(H) = Ej + o(l);j = 0, ...,n — 1 and 
x{ti, ...,tn) G Co°(Mn) a cutoff function which is identically 1 near 
(0, . . . ,0). As before, we will assume that 7i,...,7fc C £ # are unsta­
ble, nondegenerate, periodic bicharacteristics of H = po and that (HI) 
and (H2) are satisfied. Our first objective here is to microlocalize the 
analysis of expected values of the ipj to arbitrarily small tubular neigh­
bourhoods of the 7fc's. To begin, we introduce the appropriate classes 
of ^-pseudodifferential operators: Let Si C K" be an open set. We say 
a(x,Ç;h) G S™"k (fi x K" ) if a ~ h~m £ \ ajiï>, where, for any a, ß G N™, 

(77) \d^aj(x,o\ <ca,ß(i + lei)*-''-'". 
As is customary, we will henceforth write (£) := \J\ + |£|2. The cor­
responding Kohn-Nirenberg ^-pseudodifferential operators are defined 
locally by: 

(78) Ophu(x) := (2nh)-n f e^x-y^ha(x, £; h)u(y)dydÇ. 
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Such operators form a calculus, provided we work modulo operators in 
Opfi(S~oc,~oc). In particular, 

OpH(S™'k) o Oph{Sr^k') c Oph(S™+m'>k+k'), 

and there exists the usual composition formula for symbols: If 

OpH{c) = Oph{a) o OpH{b), 

then: 

(79) c(x, £; ft) ~ Y, -^d^aix, Ç; h)d^b{x, £; h). 
a 

Without loss of generality, we will assume that the operators 
hPo,..., hPn-i are all in Opti{Scj ) and since we are interested in spectral 
asymptotics, we will choose the artificial semiclassical parameter, h, so 
that h~l G Spec Po- Consider the cutoff function, 

(80) XE(X,0 := x(P0 - E0, ...,Pn-i - £n- i ) G S°'~°°-

First, to microlocalize the analysis to a neighbourhood QE of £# , we 
consider the action of the operator OP^XE) on the eigenfunctions ipj. 
When there is no risk of confusion, we will denote both the cutoff func­
tion and the associated operator by x-

Lemma 3. Let ipj be an L2-normalized, joint eigenfunction satis­
fying 

{H0 - \o)ipj = ••• = {Hn-i - \n-i)ipj = 0, 

where \j{h) = Ej + o(l). Then, 

\\{i-XE)n\ = o{rn-

Proof. Since 

{hP0 - \o)ipj = ... = {hPn-i - \n-i)ipj = 0, 

we can write, 

(81) P{1-XE)^J = [P,1-XEW 

where, for simplicity of notation, we have written 

n - l 

(82) P^YiàPj-Xjr-ihPj-Xj). 
3=0 
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Note that the operator P is ^-elliptic on supp (1 — XE)- Thus, if X'E ls 

a cutoff function which is identically f on supp XE (we will henceforth 
use the notation XE -< X'E)-> by a parametrix construction in the cal­
culus, one can construct a symbol, r(x,Ç;H) G Sj~ depending locally 
smoothly on (Ai,. . . , A„), such that: 

(83) (f - x!E)PR{l - XEWJ = (1 - XE)'^ + 0{h°°). 

On the other hand, by the symbolic calculus, 

, (jh\\a\ 

omi-XE])~Y.-J^(d>(p)dt(l-XE) 
(84) V a[ 

-<%(l-XE)d?*(P)). 

Since for any \a\ > 1, d" Al — XE) = 0 on supp (1 — X'E)->
 w e n a v e 

(85) \\{l-x1E)[P,l-XE]\\=ö{h0°). 

Finally, note that the initial choice of the cutoff function XE was arbi­
trary. Therefore, by working with a cutoff X"E ^ XE instead of XE, the 
result follows. q.e.d. 

Given a classical observable q G CQ°(T*M) as above, our aim is to 
study the asmyptotics of the expected values (Qipj,ipj) of the associ­
ated quantum observable, Q := Op^(q), where F denotes a semiclas-
sical, anti-Wick (Friedrichs) quantization. The result of Theorem 1 is 
independent of the particular anti-Wick quantization but, for the sake 
of concreteness, we fix such a quantization once and for all as follows: 
Given q G C^(T*M), we define: 

Op%{q)u{x;h) =(27rft)-3"/2
 e*W^,0-<«^,0)A 

• Q{X,OX(X - z)x{x - y)u{y)dydzd£, 

where, 

(87) <P(x,y,0 =expx
1(y) -Ç + -d2(x,y). 

Here, expx : TXM —> M is the geodesic exponential map for the metric 
form g^ÇiÇj, d(-,-) is the Riemann distance function and x 1S a cutoff 
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function supported in a sufficiently small neighbourhood of 0. ft is 
readily shown that , given q = q(x,Ç) G CQ°(T*M), 

(88) Op%(q)=Oph(q)+Oph(r2), 

where r2(x,y,Ç;h) G CQ° and is O(H). The identity (88) is proved as 
follows: Let Xj'iJ = 1) -;N be a partition of unity on M subordinate 
to a covering by coordinate charts: By performing an iterated integral, 
we get that Op^(q)(xju)(x) equals: 

(27rh)~3n/2 ei{-x~v)ilh
 (A{y-'AiJr<i>{z,x,i)-4>{z,y,i)]in 

• q(x,0x(x - z)x(x - y)dz)xj(y)dydÇ 

(90) =(2nh)-n e^-y^hq(x,y,OxMdyd^. + ( 2 ^ ) " " 

^-^hr1(x,y,^h)xJ(y)dyd^ 

Here, we have used the fact that , by definition (87), the phase in (89) is 
non-degenerate in z and, as a consequence, r\ G CQ° and ri(x, y, £; K) = 
O(h). Finally, by making a Taylor expansion about x = y in (90) and 
an integration by parts: 

(91) Op%(q)=Oph(q)+Oph(r2), 

where, r2(x, y, £; K) G CQ° and r2 = 0(H). As a consequence of the above 
argument combined with Lemma 3, it follows that : 

(92) \\(l-Opfl(xE)m\=0(h™). 

Henceforth, when there is no risk of confusion, we drop the superscript 
F , with the understanding that unless otherwise stated, anti-Wick quan­
tization is implied. Summing up, we so far have shown that : 

(93) m ^ i ) = UEQ^IPJ) + 0(h°°). 

To refine the microlocalization in (93), we now introduce a few other 
cutoff functions about the geodesies 7^: Let d(,) denote a Riemannian 
distance function on T*M. Consider the 1-parameter family of tubular 
neighbourhoods of the form: 

n*(r ) = {(x,0 G T*M;d((x,0,lk) < re}, 
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where, r e i and e > 0 is a fixed constant. Let xì G Co°(^(2)) be 
identically 1 in fifc(l) and xi2 G C70°°(Qfc(13/8)-Qfc(ll/8)) be identically 
1 in fi*(7/4) - fife(5/4). Write 

fc k 

(94) (Q ,̂̂ ) = Etó^ '^ ' ) + E«1 -XÌ)Q ,̂̂ )-

Now, if [/"(£) = exp(itPo), since i/>j is an eigenfunction of Po, by the 
unitarity of U(t) together with Lemma 3 it follows that: 

(95) ((i -X[)Q^,^) = ((i -X\)XEQ^,^) + o(tf°) 

(96) = (U(t)(l -Xi)XEQU(-t)^j,^j) + 0(h°°). 

Then, by the semiclassical Egorov Theorem [14], 

mw-xüxEQui-Wj,^) 
= (Opf t(exptS;0(l - xÜXEqWj^j) + 0(H). 

Note that in Lemma 3, we can choose supp x arbitrarily small. Thus, 
it follows from hypothesis (H2) that for h sufficiently small, there exists 
TER, such that for all / = 1,.., k, 

k 

(98) ( J supp(xli2) => supp(expTS;o(l - XÌÌXEQ)-

l=i 

We can in fact assume that x'12 = 1 on supp(expTS*(l — X\)XEQ)- AS 

a consequence, we have proved 

Proposition 1. Let ipj G C°°(M) be an L2-normalized joint eigen­
function satisfying hP^ipj = Xk(h)ipj for k = 0, ...,n — I, where \k(h) = 
Ek + o(l). Then, for H sufficiently small, 

k 

(QVj, Vj) = J2^[XEQ^J,Ì>J) + E(h) + 0(h), 
i=i 

where, \E(h)\ < ||g||oo ( E ? = I l lXr^l l ) • 

To estimate the terms ÌXIXEQIPJ,Ì>J) and E(h) appearing in Propo­
sition 1, we will need the microlocal Birkhoff normal form proved in 
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Theorem 3. In particular, recall that there exists a microlocally unitary 
Fi : Cg°(fij x 7 i) - • C0°°(O0 x S1) such that 

(99) l l x ì ^ o C f f o , . . . , ^ - ! ; ^ - 1 - ?98) | | = ö(ft°°) 

and 

(100) 11x1(^ (^0 , •••,ffn-i;Ä)iJ,r1 -Qi)\\ = °(h°°) 

for j = l,...,n — 1. Moreover, for each 71, there exist canonical gen­
eralized Fermi coordinates (s,a,y,rj) G T*(E>1) x T*(R"_1) in terms of 
which, 

(101) 7 = { ( s ,0 ,0 ,0 ) ; s eS 1 } . 

Clearly, we would like to replace the ipj by Uj := Fiipj and then 
estimate the latter by using the explicit form of the model problem 
given by the microlocal Birkhoff normal form above. To estimate the 
first term on the RHS of Proposition 1, note that, since F[ is microlocally 
unitary on Ql

2, 

(102) (X'IXEQ^,^) =(x[Qi>j, *l>j) + 0(h°°) 

=(xliQFiuJ,X2F,uJ) + 0(h00) 

(103) ^FÎxÎVFÎxiQFwjiUj) + 0(h°°). 

Therefore, 

k 

1=1 

where Q\ := FfQF\. Moreover, since x\i is supported on the annular 
region f̂ 13/8 — ^n/2) it a l s o follows that 

k 

\E{h)\ < | | g | | ooE ||Xl2«jll), 
1=1 

where Xu : = ^Xu-^l- Hence, as a consequence of Proposition 1, we 
have: 

k 

(104) mj^j) = ^iXiQWjiUj) + E(h) + 0(h), 
1=1 


