Illinois Journal of Mathematics

Knots and shellable cell partitionings of $S^{3}$

Steve Armentrout

Full-text: Open access

Article information

Source
Illinois J. Math. Volume 38, Issue 3 (1994), 347-365.

Dates
First available in Project Euclid: 19 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1255986719

Mathematical Reviews number (MathSciNet)
MR1269692

Zentralblatt MATH identifier
0832.57014

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 52B99: None of the above, but in this section 57M40: Characterizations of $E^3$ and $S^3$ (Poincaré conjecture) [See also 57N12] 57M50: Geometric structures on low-dimensional manifolds 57M50: Geometric structures on low-dimensional manifolds 57Q05: General topology of complexes

Citation

Armentrout, Steve. Knots and shellable cell partitionings of $S^{3}$. Illinois J. Math. 38 (1994), no. 3, 347--365. https://projecteuclid.org/euclid.ijm/1255986719.


Export citation