KNOTS AND SHELLABLE CELL PARTITIONINGS OF S³

STEVE ARMENTROUT

A cell partitioning of S^3 is a finite covering H of S^3 by 3-cells such that if m is any positive integer and exactly m 3-cells of H intersect, their common part is a cell of dimension 4-m, where cells of negative dimension are empty. The 3-cells of a cell partitioning of S^3 fit together in a staggered, brick-like pattern.

A cell partitioning H of S^3 is *shellable* if and only if there is a counting $\langle h_1, h_2, \dots, h_n \rangle$ of H such that if i is an integer and $1 \le i < n$, then $h_1 \cup h_2 \cup \dots \cup h_i$ is a 3-cell. Such a counting is a *shelling* of H.

In this paper, we shall study a connection between knots in S^3 and shellability of cell partitionings of S^3 . We shall use these results to construct nonshellable cell partitionings of S^3 .

Our results involve the use of the bridge number of a knot in S^3 . In Section 1 of this paper, we shall review some results concerning knots in S^3 and bridge numbers of knots in S^3 . In Section 2, we shall establish the main result of the paper. In Section 3, we shall establish a variant of the main result that is useful in some situations. In Section 4, we shall use the results of this paper to construct a nonshellable cell partitioning of S^3 and, as a variation on that construction, a nest of nonshellable cell partitionings of S^3 .

Throughout this paper, we shall assume that S^3 has its standard piecewise linear structure.

The author thanks the referee for suggestions and corrections.

1. Knots in S^3

A knot in S^3 is a polygonal simple closed curve in S^3 . Two knots k and l in S^3 are of the same knot type in S^3 if and only if there is an orientation preserving PL homeomorphism $f: S^3 \to S^3$ such that f(k) = l. A knot in S^3 is trivial if and only if it has the same knot type as the boundary of a 2-simplex in S^3 .

Suppose C is a 3-cell. Then α is a spanning arc of C if and only if α is an arc in C such that Bd $\alpha \subset Bd$ C and Int $\alpha \subset Int$ C. D is a semispanning disc of C if and only if D is a disc in C such that Int $D \subset Int$ C and $D \cap Bd$ C is an arc on Bd C. The statement that β is a straight spanning arc of C means that β is a spanning arc of C and there is a semispanning disc D of C such that $\beta \subset Bd$ D. Recall that if β is a polyhedral straight spanning arc of a

Received February 28, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M50; Secondary 57M25.

polyhedral 3-cell C and α is any polyhedral arc on Bd C with Bd β = Bd α , then there is a polyhedral semispanning disc Δ in C with Bd $\Delta = \alpha \cup \beta$.

The statement that $\alpha_1, \alpha_2, \ldots$, and α_n are simultaneously straight in C means that $\alpha_1, \alpha_2, \ldots$, and α_n are mutually disjoint spanning arcs of C and there exist mutually disjoint semispanning discs D_1, D_2, \ldots , and D_n of C such that for each $i, \alpha_i \subset \operatorname{Bd} D_i$.

Suppose l is a knot in S^3 , C is a polyhedral 3-cell in S^3 , and m is a positive integer. Then l is in m-bridge position on C if and only if there exist mutually disjoint arcs $\alpha_1, \alpha_2, \ldots$, and α_m on Bd C and mutually disjoint arcs β_1, β_2, \ldots , and β_m simultaneously straight in C, such that $l = (\alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_m) \cup (\beta_1 \cup \beta_2 \cup \cdots \cup \beta_m)$.

If k is a knot in S^3 , then the *bridge number* of k, denoted by br k, is defined to be the least positive integer m such that there exist a knot l in S^3 and a polyhedral 3-cell C in S^3 such that (1) l and k have the same knot type, and (2) l is in m-bridge position on C.

For basic results concerning the bridge number of a knot, see [8]. It is clear that bridge number is an invariant of knot type. A knot in S^3 is trivial if and only if the knot has bridge number 1. It is easily seen, for example, that the trefoil knot in S^3 has bridge number 2.

2. The main result

In this section we shall establish a relationship between the bridge number of a knot in S^3 and the nonshellability of a cell partitioning of S^3 related to the knot in a special way. First we shall introduce some terminology.

Suppose H is a cell partitioning of S^3 . If h and k are distinct intersecting 3-cells of H, then $h \cap k$ is a disc. By a *face* of H is meant such a disc. The 2-skeleton of H, denoted by 2-skel H, is the union of all the faces of H. The 1-skeleton of H, 1-skel H, is the set of all points common to three or more sets of H. The 0-skeleton of H, 0-skel H, is the set of all points common to four sets of H.

Suppose that H is a polyhedral cell partitioning of S^3 , and k is a knot in S^3 . Then k is compatible with H if and only if (1) k and 2-skel H are in relative general position in S^3 , and (2) if $h \in H$ and k intersects h, then $h \cap k$ is a single straight spanning arc. Suppose k is compatible with H. Then the partitioning of k induced by H is $\pi(k, H) = \{k \cap h: h \in H \text{ and } h \cap k \neq \phi\}$. Let $|\pi(k, H)|$ denote the number of arcs in the partitioning of k induced by H.

We are now prepared to prove the main result of this paper. It was suggested by examples due to Bing (pp. 110-111 of [3]). In this connection, see also [4], [5], [6], and [7].

THEOREM 1. Suppose H is a polyhedral cell partitioning of S^3 , k is a knot in S^3 , and k is compatible with H. If $|\pi(k, H)| < 2$ br k, then H is not shellable.

Proof. Suppose that H is shellable. Then there is a shelling $\langle h_1, h_2, \ldots, h_n \rangle$ of H. If $1 \le i < n$, let C_i denote $h_1 \cup h_2 \cup \cdots \cup h_i$; C_i is a 3-cell.

Now we shall give a brief outline of the proof. By simple geometric moves, we shall construct a knot l in S^3 such that (1) l and k are of the same knot type and (2) for some positive integer r such that $2r \le |\pi(k, H)|$ and some polyhedral 3-cell C in S^3 , l is in r-bridge position on C. Thus br $l \le r$ and since k and l are of the same knot type, then br $k \le r$. Since by hypothesis, $|\pi(k, H)| < 2$ br k, then $2r \le |\pi(k, H)| < 2$ br k, and thus br $k \le r <$ br k. This is a contradiction.

We shall obtain l as follows. Let $k_0 = k$. Let m be the largest positive integer j such that k intersects h_j . If $1 \le i < m$, we shall construct a knot k_i , of the same knot type as k, and obtained from k_{i-1} by adjusting the part of k_{i-1} in C_i . It is to be true that $k_i - C_i = k - C_i$. Further, there are integers p_i and q_i such that (1) $k_i \cap C_i$ is the union of q_i simultaneously straight spanning arcs of C_i and p_i mutually disjoint arcs on Bd C_i , and (2) $p_i + q_i$ is at most the number of cells among h_1, h_2, \ldots , and h_i that k intersects. We obtain l by an analogous adjustment of k_{m-1} , and l has the properties that $l \subset C$, and l is the union of q_m simultaneously straight spanning arcs of C and p_m mutually disjoint arcs on Bd C where $p_m + q_m$ is at most the number of cells among h_1, h_2, \ldots , and h_m that l intersects. Thus $p_m + q_m \le |\pi(k, H)|$. Since $l \subset C$, then $p_m = q_m$. If $r = p_m = q_m$, then l is in r-bridge position on C.

Now we shall give the details concerning the construction of the knots k_1, k_2, \ldots , and k_{m-1} . Recall that m is the largest positive integer j such that k intersects h_j . Let k_0 denote k. Let t be the least positive integer i such that k intersects h_i . If 1 < i < n, let D_i denote $C_{i-1} \cap h_i$; by Lemma 5, D_i is a disc. If 1 < i < n, let E_i denote (Bd h_i) – (Int D_i). Let E_1 = Bd h_1 .

Let $k_1 = k_2 = \cdots = k_{t-1} = k$. Let β_{t1} denote $k \cap h_t$. Then β_{t1} is a straight spanning arc of h_t with Bd $\beta_{t1} \subset \text{Int } E_t$. Hence there exist a polygonal arc λ_{t1} in Int E_t with Bd $\beta_{t1} = \text{Bd } \lambda_{t1}$ and a polyhedral semispanning disc Δ_{t1} in h_t such that Bd $\Delta_{t1} = \beta_{t1} \cup \lambda_{t1}$. Also, we require that λ_{t1} and the boundaries of the faces of H on (Bd h_t) be in relative general position on Bd h_t .

For each positive integer i such that $t \le i < m$, let S_i denote the following statement.

- S_i : There exist
- (1) a knot k_i in S^3 of the same knot type as k_{i-1} ,
- (2) nonnegative integers p_i and q_i such that $p_i + q_i$ is at most the number of 3-cells among $\{h_1, h_2, \ldots, h_i\}$ that k intersects,
- (3) mutually disjoint polyhedral arc $\alpha_{i1}, \alpha_{i2}, \dots$, and α_{ip_i} on Bd C_i ,
- (4) mutually disjoint polyhedral arc $\beta_{i1}, \beta_{i1}, \dots$, and β_{iq_i} simultaneously straight in C_i ,

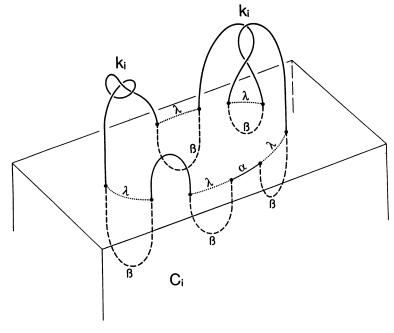


Fig. 1

- (5) mutually disjoint polyhedral arcs $\lambda_{i1}, \lambda_{i2}, \cdots$, and λ_{iq_i} on Bd C_i such that for $1 \le j \le q_i$, there is a polyhedral semispanning disc Δ_{ij} of C_i with Bd $\Delta_{ij} = \beta_{ij} \cup \lambda_{ij}$ and $\Delta_{i1}, \Delta_{i2}, \Delta_{iq_i}$ mutually disjoint, such that
- (a) $k_i = (k C_i) \cup (\bigcup_j \alpha_{ij}) \cup (\bigcup_j \beta_{ij}),$
- (b) if x is an endpoint of some α_{ij} , then x is also an endpoint of some β_{iu} , and
- (c) the α 's and λ 's are in general position relative to the boundaries of faces of H on Bd C_i .

If $p_i = 0$, there are no α 's, and if $q_i = 0$, there are no β 's. See Figure 1. Now S_t is true. Let $k_t = k$. The arcs β_{t1} and λ_{t1} , and the disc Δ_{t1} were defined above. Let $p_t = 0$ and $q_t = 1$. Then $p_t + q_t = 1$, and note that k intersects at most one of the 3-cells h_1, h_2, \cdots , and h_t . Suppose now that t < i < m - 1 and S_{i-1} is true. We shall prove that S_i

Suppose now that t < i < m-1 and S_{i-1} is true. We shall prove that S_i is true. Since S_{i-1} holds, there exist k_{i-1} , p_{i-1} , q_{i-1} , α 's, β 's, λ 's, and Δ 's as described in the statement of S_{i-1} .

We shall consider four cases. In each case, we may modify k_i and existing α 's, β 's, λ 's, and Δ 's. We may construct one additional α or one additional β , but not both.

Case 1. k and h_1 are disjoint.

In this case, no additional α 's or β 's are constructed. It follows in this case that k_{i-1} is disjoint from $h_i - D_i$.

There is a PL homeomorphism $f_i: D_i \to E_i$ such that $f_i | Bd D_i = id$. Then $f_i: D_i \to E_i$ extends to a PL homeomorphism $\hat{f_i}$ Bd: $C_{i-1} \to \text{Bd } C_i$ such that $\hat{f_i}|(\operatorname{Bd} C_{i-1}) - D_i| = \operatorname{id}$. There is a PL homeomorphism $F_i: S^3 \to S^3$ such that

- (1) $F_i(C_{i-1}) = C_i$, (2) F_i extends $\hat{f_i}$, and
- (3) except on a close neighborhood of h_i , $F_i = id$.

Let $p_i = p_{i-1}$ and $q_i = q_{i-1}$. If $1 \le j \le q_i$, let $\alpha_{ij} = F_i(\alpha_{i-1,j})$, $\lambda_{ij} = q_i$ $F_i(\lambda_{i-1,j})$, and $\Delta_{ij} = F_i(\Delta_{i-1,j})$. If $1 \le j \le q_i$, let $\beta_{ij} = F_i(\beta_{i-1,j})$. We may assume that the α 's and λ 's are in general position relative to the boundaries of faces of H on Bd C_i . Let $k_i = F_i(k_{i-1})$. We may assume, since $k \cap h_i = \phi$, that $F_i | k - k_i = id$.

Clearly k_{i-1} and k_i are of the same knot type in S^3 . Since $p_i = p_{i-1}$, $q_i = q_{i-1}, k \cap h_i = \phi$, and $p_{i-1} + q_{i-1}$ is at most the number of cells among h_1, h_2, \ldots , and h_{i-1} that k intersects, then $p_i + q_i$ is at most the number of cells among h_1, h_2, \ldots , and h_i that k intersects. Thus S_i holds in this case.

Case 2. k intersects h_i but is disjoint from D_i .

In this case, one additional β is constructed. Let $\beta_{iq_i} = k \cap h_i$. Then β_{iq_i} is a polyhedral straight spanning arc of h_i with Bd β_{iq_i} in Int E_i . Let λ_{iq_i} be a polyhedral arc in Int E_i with Bd $\lambda_{iq_i} = \text{Bd } \beta_{iq_i}$. There is a polyhedral semi-

spanning disc Δ_{iq_i} of h_i with Bd $\Delta_{iq_i} = \beta_{iq_i} \cup \lambda_{iq_i}$. Let δ_i be a small polyhedral disc in Int D_i and disjoint from the α 's and λ 's. There is a piecewise linear homeomorphism $F_i: S^3 \to S^3$ such that

- $(1) F_i(\delta_i) = D_i,$
- (2) $F_i(C_{i-1}) = C_{i-1}$, and
- (3) except on a close neighborhood of D_i , F_i is the identity and, in particular, $F_i|(\Delta_{ia_i} \cup k_i)$ is the identity.

Let $p_i = p_{i-1}$ and let $q_i = 1 + q_{i-1}$. If $1 \le j \le p_i$, let $\alpha_{ij} = F_i(\alpha_{i-1,j})$. If $1 \le j < q_i$, let $\beta_{ij} = F_i(\beta_{i-1,j})$, $\lambda_{ij} = F_i(\lambda_{i-1,j})$, and $\Delta_{ij} = F_i(\Delta_{i-1,j})$. We defined β_{iq_i} , λ_{iq_i} , and Δ_{iq_i} above. Let $k_i = k_{i-1}$. We use the homeomorphism F_i to adjust the α 's, β 's, and λ 's that intersect D_i , but continue the argument with the original h's. We do not replace h_i by $F_i(h_i)$. Since $p_i + q_i = 1 + 1$ $p_{i-1} + q_{i-1}$ and k intersects only one more 3-cell among h_1, h_2, \dots , and h_i than among h_1, h_2 and h_{i-1} , then condition (2) of S_i holds. It is easily seen that S_i holds in this case.

Case 3. k intersects D_i in exactly one point.

In this case, no additional α 's or β 's are constructed, but we extend an existing β .

Let x be the point common to k and D_i . It follows from condition 5(b) of S_{i-1} that x is an endpoint of a component of k – Int C_{i-1} , and an endpoint of some β . There is an integer w such that $1 \le w \le q_{i-1}$ and x is an endpoint of $\beta_{i-1,w}$. Then x is also an endpoint of $\lambda_{i-1,w}$.

Let δ be a small polyhedral disc in Int D_i with x in Int δ , such that (1) $\delta \cap \lambda_{i-1,w}$ is an arc λ_0 with one endpoint z on Bd δ and x as the other endpoint, and (2) δ intersects no α , no β other than $\beta_{i-1,w}$, and no λ other than $\lambda_{i-1,w}$.

There is a piecewise linear homeomorphism $F_i: S^3 \to S^3$ such that

- (1) $F_i|\beta_{i-1,w} \cup (k \cap h_i)$ is the identity,
- (2) $F_i(\delta) = D_i$,
- (3) $F_i(C_i) = C_i$, and
- (4) except on a close neighborhood of D_i , F_i is the identity.

Since $F_i(z)$ is on Bd D_i , there is an arc λ' in E_i with endpoints $F_i(z)$ and the point common to E_i and k_i , and with Int λ' in Int E_i . Since $k \cap h_i$ is straight in h_i , then $\lambda' \cup F_i(\lambda_0) \cup (k \cap h_i)$ bounds a polyhedral semispanning disc Δ' of h_i .

Since $\lambda_0 \subset \lambda_{i-1,w}$, it follows that $\Delta' \cup F_i(\Delta_{i-1,w})$ is a disc Δ_{iw} . Let

$$\lambda_{iw} = \left[F_i(\lambda_{i-1,w}) - F_i(\lambda_0) \right] \cup \lambda'.$$

Recall that $\beta_{i-1,w} = F_i(\beta_{i-1,w})$ and $k \cap h_i = k_i \cap h_i$. Now let $\beta_{iw} = \beta_{i-1,w} \cup (k \cap h_i)$. Then Bd $\Delta_{iw} = \beta_{iw} \cup \lambda_{iw}$.

Let $p_i = p_{i-1}$ and $q_i = q_{i-1}$. If $1 \le j \le p_i$, let $\alpha_{ij} = F_i(\alpha_{i-1,j})$. If $1 \le j \le q_i$ and $j \ne w$, let $\beta_{ij} = F_i(\beta_{i-1,j})$, $\lambda_{ij} = F_i(\lambda_{i-1,j})$, and $\lambda_{ij} = F_i(\lambda_{i-1,j})$. Let

$$k_i = (k - \text{Int } C_i) \cup \left(\bigcup_{j=1}^{p_i} \alpha_{ij}\right) \cup \left(\bigcup_{j=1}^{q_i} \beta_{ij}\right).$$

Note that $k_i = F_i(k_{i-1})$. Hence k_i and k_{i-1} are of the same knot type in S^3 . As in Case 2, we use the homeomorphism F_i only to adjust the α 's, β 's, and λ 's that intersect D_i .

It is easily verified that S_i holds in this case.

Case 4. k intersects D_i in two points.

In this case, we shall construct an additional α .

Let x and y be the points common to k and D_i . It is clear that $k \cap h_i = k_{i-1} \cap h_i$. By condition 5(b) of S_{i-1} , neither x nor y can be an endpoint of any α , and hence x and y are endpoints of β 's. Since x and y lie in Int D_i , there is a polygonal arc A from x to y and lying in Int D_i .

We shall first adjust those α 's that intersect A by pushing them off A, keeping C_{i-1} invariant. Suppose $1 \le j \le p_{i-1}$ and $\alpha_{i-1,j}$ intersects A. There

is a piecewise linear homeomorphism $g_j \colon S^3 \to S^3$ such that (1) g_j fixes one endpoint of $\alpha_{i-1,j}$ and shortens $\alpha_{i-1,j}$ so that $g_j(\alpha_{i-1,j})$ is disjoint from A, (2) except on a close neighborhood of $\alpha_{i-1,j}, g_j$ is the identity, and (3) $g_j(C_{i-1}) = C_{i-1}$. Let $f_1 \colon S^3 \to S^3$ be the composite, in some order, of all such g_j 's for the $\alpha_{i-1,j}$ that intersect A. Then for each arc α , $f_1(\alpha)$ is disjoint from A.

There is a piecewise linear homeomorphism $f_2: S^3 \to S^3$ such that (1) $f_2(D_i) = E_i$, (2) f_2 is the identity on $(\operatorname{Bd} C_{i-1}) - (\operatorname{Int} D_i)$, (3) $f_2(C_{i-1}) = C_i$, and (4) except on a close neighborhood of h_i , f_2 is the identity.

Let $F_i = f_2 \circ f_1$: $S^3 \to S^3$. Let $p_i = 1 + p_{i-1}$ and let $\alpha_{ip_i} = F_i(A)$. If $1 \le j \le p_{i-1}$, let $\alpha_{ij} = F_i(\alpha_{i-1,j})$. Let $q_i = q_{i-1}$. If $1 \le j \le q_i$, let $\beta_{ij} = F_i(\beta_{i-1,j})$, $\lambda_{ij} = F_i(\lambda_{i-1,j})$, and $\lambda_{ij} = F_i(\Delta_{i-1,j})$. Note that $p_i + q_i = 1 + p_{i-1} + q_{i-1}$. Let $k_i = F_i([k_{i-1} - (h_i \cap k)] \cup A)$.

Since $h_i \cap k$ is straight in h_i , then $A \cup (h_i \cap k)$ bounds a polyhedral semispanning disc of h_i . It follows easily that k_{i-1} and k_i are of the same knot type in S^3 .

It is easily established that S_i holds in this case.

Thus if t < i < m-1 and S_{i-1} is true, than S_i is true. Since S_t is true, it follows that S_{m-1} is true.

The situation involving h_m requires special treatment because of the possibility that m = n, in which case C_m is not defined.

Since m is the largest integer i such that k intersects h_i , it follows that k intersects D_m in two points x_m and y_m . Let A_m be a polygonal arc in Int D_m from x_m to y_m . By a procedure similar to that used in Case 4 above, we may use a piecewise linear homeomorphism $F_m = S^3 \rightarrow S^3$ to adjust the α 's so that their images are disjoint from A_m , keeping the remainder of k_{m-1} pointwise fixed.

Since $k \cap h_m$ is straight in h_m , $(k \cap h_m) \cup A_m$ bounds a polyhedral semi-spanning disc B_m of h_m . Thicken B_m slightly relative to C_{m-1} to obtain a 3-cell B_m^* in h_m such that (1) B_m is a spanning disc of B_m^* , (2) $B_m^* \cap D_m$ is a disc having A_m as a spanning arc, (3) $k \cap h_m$ is a spanning arc of (Bd B_m^*) – Int($B_m^* \cap D_m$), and (4) B_m^* is a close (closed) neighborhood of B_m .

Let $p_m = 1 + p_{m-1}$ and let $q_m = q_{m-1}$. If $1 \le j < p_m$, let $\alpha_{mj} = F_m(\alpha_{m-1,j})$, and let $\alpha_{mp_m} = k \cap h_m$. If $1 \le j \le q_m$, let $\beta_{mj} = F_m(\beta_{m-1,j})$, $\lambda_{mj} = F_m(\lambda_{m-1,j})$, and $\Delta_{mj} = F_m(\Delta_{m-1,j})$. Let $l = F_m(k_{m-1})$. Clearly l and k_{m-1} have the same knot type in S^3 .

Let $C = C_{m-1} \cup B_m^*$. Then C is a polyhedral 3-cell in S^3 and $l \subset C$.

Since $p_{i-1}+q_{i-1}$ is at most the number of 3-cells among h_1,h_2,\ldots , and h_{m-1} that intersect k, and $l \subset h_1 \cup h_2 \cup \cdots \cup h_m$, then clearly $p_m+q_m \leq |\pi(k,H)|$.

Now l and k are of the same knot type in S^3 , since $k = k_0, k_1, k_2, \dots, k_{m-1}$, and l all have the same knot type.

Now for each integer j with $1 \le j \le p_m$, let $\alpha_j = \alpha_{mj}$, and if $1 \le j \le q_m$, let $\beta_j = \beta_{mj}$. It is clear that $p_m = q_m$, and let $r = p_m = q_m$. Since for $1 \le j \le r$, β_j lies on the boundary of the polyhedral semispanning disc Δ_{mj}

of C, and $\Delta_{m1}, \Delta_{m2}, \cdots$, and Δ_{mr} are disjoint, then the β 's are simultaneously straight in C. Further, each of $\alpha_1, \alpha_2, \cdots$, and α_r lies on Bd C and

$$l = \left(\bigcup_{j=1}^r \alpha_j\right) \cup \left(\bigcup_{j=1}^r \beta_j\right).$$

It follows that l is in r-bridge position on C. Further, since $p_m + q_m \le (\pi(k, H)|$, then $2r \le |\pi(k, H)|$.

Thus the knot l has the properties that (1) k and l are of the same knot type in S^3 and (2) for some positive integer r such that $2r \le |\pi(k, H)|$ and some polyhedral 3-cell C in S^3 , l is in r-bridge position on C. It was pointed out above that this leads to a contradiction. Hence H is nonshellable.

We shall conclude this section by showing that the result of Theorem 1 is, in a sense, sharp. See also [7].

THEOREM 2. Suppose that k is a nontrivial knot in S^3 . Then there exists a shellable polyhedral cell partitioning H of S^3 such that k is compatible with H and $|\pi(k, H)| = 2$ br k.

Proof. Let $r = \operatorname{br} k$. Then there exists a polyhedral 3-cell C in S^3 such that k is in r-bridge position on C. Hence there exist mutually disjoint polyhedral arcs α_1, α_2 and α_r on $\operatorname{Bd} C$ and mutually disjoint polyhedral arcs β_1, β_2, \cdots , and β_r simultaneously straight in C such that $k = (\bigcup_{i=1}^r \alpha_i) \cup (\bigcup_{i=1}^r \beta_i)$. Since β_1, β_2, \cdots , and β_r are simultaneously straight in C, there exist mutually disjoint polyhedral semispanning discs D_1, D_2, \cdots , and D_r of C such that if $1 \le i \le r$, then $\beta_i \subset \operatorname{Bd} D_i$.

Let $B = S^3 - \operatorname{Int} C$; B is a polyhedral 3-cell in S^3 . If $1 \le i \le r$, adjust α_i by pushing $\operatorname{Int} \alpha_i$ slightly into $\operatorname{Int} B$. We may do this so that the adjusted $\alpha_1, \alpha_2, \cdots$, and α_r are polyhedral and simultaneously straight in B. We may assume that this adjustment is made by a piecewise linear homeomorphism $f \colon S^3 \to S^3$ that is the identity on each of β_1, β_2, \cdots , and β_r . Since $f(\alpha_1), f(\alpha_2)$ and $f(\alpha_r)$ are simultaneously straight in B, there are mutually disjoint polyhedral semispanning discs E_1, E_2, \ldots , and E_r of B such that if $1 \le i \le r$, $f(\alpha_i) \subset \operatorname{Bd} E_i$. We may assume that if $1 \le i \le r$ and $1 \le j \le r$, then $D_i \cap \operatorname{Bd} B$ and $E_i \cap \operatorname{Bd} B$ are in relative general position on $\operatorname{Bd} B$.

Thicken $f(\alpha_i), f(\alpha_2), \ldots$, and $f(\alpha_r)$ slightly relative to B to obtain mutually disjoint polyhedral 3-cells F_1^*, F_2^*, \cdots , and F_r^* such that if $1 \le j \le r$, then (1) $F_j^* \cap \operatorname{Bd} B$ is the union of two disjoint discs, $F_j^* \cap E_j$ is a disc, and $f(\alpha_j)$ is a straight spanning arc of F_j^* , and (2) if $1 \le i \le r$, $D_i \cap F_j^*$ is empty or an arc.

Suppose $1 \le j \le r$. Let $E'_j = \operatorname{Cl}(E_j - F_j^*)$. Cut E'_j into narrow strips E_{j1}, E_{j2}, \cdots , and E_{jn_j} , cutting in a direction normal to Bd B, so that if $1 \le k \le n_j$, E_{jk} intersects at most one of the D's, and then in an interior point of $E_{jk} \cap \operatorname{Bd} B$. We may assume that if $1 \le i \le r$, then $E_{jk} \cap D_i$ is

empty or a point. We assume E_{j1}, E_{j2}, \dots , and E_{jn_j} counted in order so that any two consecutive ones intersect in an arc.

If $1 \leq j \leq r$, thicken E_{j1}, E_{j2}, \cdots , and E_{jn_j} very slightly to obtain polyhedral 3-cells $E_{j1}^*, E_{j2}^*, \cdots$, and $E_{jn_j}^*$ such that (1) if $1 \leq k \leq n_j, E_{jk}^* \cap \operatorname{Bd} B$ is a disc, $E_{jk}^* \cap F_j^*$ is a disc, E_{jk}^* intersects any neighboring E^* in a disc, and if $1 \leq i \leq r$, then $E_{jk}^* \cap D_i$ is empty or an arc. In addition, if $k < n_j$, then $E_{jk}^* \cap E_{j,k+1}^* \cap D_i = \phi$.

Thicken D_1, D_2, \cdots , and D_r very, very slightly relative to C to obtain mutually disjoint polyhedral 3-cells D_1^*, D_2^*, \cdots , and D_r^* such that if $1 \le i \le r$, then (1) $D_i^* \cap \operatorname{Bd} C$ is a disc and β_i is a straight spanning arc of D_i^* , (2) if $1 \le j \le r$, $D_i^* \cap F_j^*$ is empty or a disc, (3) if $1 \le j \le r$ and $1 \le k \le n_j$, then (a) $E_{jk}^* \cap D_i^*$ is empty or a disc and (b) is $k < n_j$, then $E_{jk}^* \cap E_{j,k+1}^* \cap D_i^* = \phi$.

Let

$$C_0 = \operatorname{Cl}\left(C - \bigcup_{i=1}^r D_i^*\right) \text{ and } B_0 = \operatorname{Cl}\left(B - \bigcup_{j=1}^r \left(F_j^* \cup \left(\bigcup_{k=1}^{n_j} E_{jk}^*\right)\right)\right).$$

Then C_0 and B_0 are polyhedral 3-cells. There is a polyhedral cell partitioning $\{B_1, B_2, \cdots, B_q\}$ of B_0 such that (1) if $1 \le i \le q$ and X is either C_0 or one of the D^* , the E^* , or the F^* , then $B_q \cap X$ is empty or a disc, and (2) if i < q, $[(Bd B_0) \cup B_1 \cup \cdots \cup B_i] \cap B_{i+1}$ is a disc. Let T consist of C_0 , the D^* , the E^* , the F^* , B_1 , B_2 , \cdots , and B_q . We may construct the B's so that T is a polyhedral cell partitioning of S^3 .

Let $\langle C_0, D_1^*, D_2^*, \dots, D_r^*, E_{11}^*, E_{12}^*, \dots, E_{1n_1}^*, F_1^*, E_{21}^*, E_{22}^*, \dots, E_{2n_2}^*, F_2^*, \dots, E_{r1}^*, \dots, E_{rn_r}^*, F_r^*, B_1, B_2, \dots, B_q \rangle$ be an ordering of K. It is easily seen that this is a shelling of T. Let this shelling be denoted by $\langle t_1, t_2, \dots, t_m \rangle$.

If $1 \le i \le m$, let $h_i = f^{-1}(t_i)$. Let $H = \langle h_1, h_2, \dots, h_m \rangle$. Then H is a polyhedral cell partitioning of S^3 , H is shellable, and by construction, k is compatible with H. Clearly $|\pi(k, H)| = 2r = 2$ br k. \square

3. Weak compatibility

In this section, we shall establish a variant of the main result, Theorem 1 above, in which we weaken the conditions regarding how the knot is placed relative to the 2-skeleton of the partitioning.

Suppose H is a polyhedral cell partitioning of S^3 and k is a knot in S^3 . Then k is weakly compatible with H if and only if (1) k and 2-skel H are in relative general position in S^3 , and (2) if $h \in H$ and k intersects h, then the arcs which form the components of $h \cap k$ are simultaneously straight in h.

Suppose H and k are as above. Then the partitioning of k induced by H is $\pi(k, H) = \{\alpha : \text{ for some cell } h \text{ of } H, \alpha \text{ is a component of } h \cap k\}; |\pi(k, H)|$ denotes the number of arcs in the partitioning of k induced by H.

THEOREM 3. Suppose H is a polyhedral cell partitioning of S^3 , k is a knot in S^3 , and k is weakly compatible with H. If $|\pi(k, H)| < \text{br } k$, then H is not shellable.

Proof. Suppose H is shellable. By Lemma 4 below, there is a shellable cell partitioning F of S^3 such that (1) k is compatible with F and (2) $|\pi(k, F)| = 2|\pi(k, H)|$. Since by hypothesis, $|\pi(k, h)| < br k$, then $|\pi(k, F)| < 2 br k$. This contradicts Theorem 1. Thus H is not shellable. \square

LEMMA 4. Suppose H is a shellable polyhedral cell partitioning of S^3 and k is a knot in S^3 weakly compatible with H. Then there is a shellable polyhedral cell partitioning F of S^3 such that k is compatible with F and $|\pi(k, F)| = 2|\pi(k, H)|$.

Before proving Lemma 4, we shall give some preliminaries. A partitioning of a 2-sphere or disc X^2 is a finite covering $\mathscr P$ of X^2 by discs-with-holes such that (1) if 2, 3, or more sets of $\mathscr P$ intersect, their common part is an arc, point, or empty, respectively, and (2) if $D \in \mathscr P$ and $D \cap \operatorname{Bd} X^2 \neq \phi$, then $D \cap \operatorname{Bd} X^2$ is an arc. If each element of $\mathscr P$ is a disc, then $\mathscr P$ is a disc partitioning of X^2 . A shelling of a disc partitioning $\mathscr D$ of X^2 is a counting $\langle D_1, D_2, \dots, D_n \rangle$ of $\mathscr D$ such that if $1 \leq i < n$, then $D_1 \cup D_2 \cup \dots \cup D_i$ is a disc. A disc partitioning $\mathscr D$ of X^2 is shellable if and only if it has a shelling.

It follows from theorems of plane topology that every disc partitioning of either a 2-sphere or a disc is shellable. However, we sometimes need a special kind of shelling of a disc. A ring partitioning of a disc D^2 is a disc partitioning \mathcal{D} of D^2 obtaining by dividing D^2 into concentric annuli, one of which contains $Bd D^2$, and a central disc, and then dividing the annuli into discs by using crossing arcs in the annuli. A ring shelling of \mathcal{D} is a counting of \mathcal{D} which first counts the discs of the outer ring in order, then those of the next inward ring in order, \cdots , and finally the central disc. Note that for such a counting $\langle D_1, D_2, \cdots, D_n \rangle$, if 1 < i < n, then $(D_1 \cup D_2 \cup \cdots \cup D_{i-1}) \cap D_i$ is an arc.

A cell partitioning of a 3-cell C^3 is a finite covering K of C^3 by 3-cells such that (1) if 2, 3, 4, or more sets of K intersect, their common part is a disc, an arc, a point, or empty, respectively, and (2) $\{k \cap \operatorname{Bd} C^3 : k \in K \text{ and } k \cap \operatorname{Bd} C^3 \neq \phi\}$ is a disc partitioning \mathscr{D} of $\operatorname{Bd} C^3$. A cell partitioning K of C^3 is shellable if and only if it has a counting $\langle k_1, k_2, \dots, k_m \rangle$ such that if $1 \leq i \leq m$, then $k_1 \cup k_2 \cup \dots \cup k_i$ is a 3-cell. Such a counting $\langle k_1 \cup k_2, \dots, k_m \rangle$ is a shelling of K.

Proof of Lemma 4. Since H is shellable, there is a shelling $\langle h_1, h_2, \dots, h_n \rangle$ of H. By Lemma 5, if 1 < i < n, then $(h_1 \cup h_2 \cup \dots, h_{i-1}) \cap h_i$ is a disc. In the constructions of this proof, we shall assume that polyhedral sets are in relative general position, in a sense appropriate to the context.

Let N be a close tubular neighborhood of (2-skel H) canonically constructed. If v is any vertex of H, N(v) is a small polyhedral ball about v. Let

$$N^0 = \bigcup \{N(v) : v \text{ is a vertex of } H\}.$$

If e is any edge of H, N(e) is a thin polyhedral 3-cell obtained by thickening $e - \text{Int } N^0$ relative to N^0 . Let

$$N^1 = N^0 \cup (\cup \{N(e): e \text{ is an edge of } H\}.$$

If f is any face of H, N(f) is a polyhedral 3-cell obtained by thickening f – Int N^1 slightly, relative to N^1 . Then

$$N = N^1 \cup (\cup \{N(f): f \text{ is a face of } H\}.$$

We may assume that $N^1 \cap k = \phi$, and for each face f of H, the number of components of $k \cap N(f)$ equals the number of points of $k \cap f$. Let \mathcal{N} be the family of all the sets N(v), N(e), and N(f) constructed above.

Suppose Σ is any set which is a union of faces of H. Let $N(\Sigma)$ be the union of the sets N(x) where x is a vertex, an edge, or a face of H lying in Σ . Note that $N(\Sigma)$ is a tubular neighborhood of Σ .

Suppose that 1 < i < n. Let

$$N_i^* = N(\operatorname{Bd} h_1) \cup N(\operatorname{Bd} h_2) \cup \cdots \cup N(\operatorname{Bd} h_i).$$

Let

$$D_i = (h_1 \cup h_2 \cup \cdots \cup h_{i-1}) \cap h_i.$$

Note that $N(\operatorname{Bd} h_i) \cap N_{i-1}^* = N(D_i)$. Let N_i be the union of all the sets of \mathcal{N} lying in $N(\operatorname{Bd} h_i)$ but not contained in $N(D_i)$. Note that N_i is a 3-cell. Now $N_i \cap N_{i-1}^* = N_i \cap N(D_i)$, and this set is an annulus A_i . If we define $N_1 = N(\operatorname{Bd} h_i)$, and for each j, 1 < j < n, define N_j as above, then $N_{i-1}^* = N_1 \cup N_2 \cdots \cup N_{i-1}$.

In our construction of the partitioning F, we shall partition N_1, N_2, \cdots , and N_{n-1} so that these partitionings fit together in specified ways. We accordingly pay special attention to the annuli A_2, A_3, \cdots , and A_{n-1} . If $2 \le i < n$, let λ_i be the boundary curve of A_i lying in h_i , and let μ_i be the other.

If $1 \le i \le n$, let $h'_i = h_i - \text{Int } N$. We may construct N so that if $1 \le i \le n$, the components of $k \cap h'_i$ are simultaneously straight in h'_i . If $1 \le i \le n$, let $\alpha_{i1}, \alpha_{i2}, \cdots$, and α_{im_i} be the components of $k \cap h'_i$. Let $\Delta_{i1}, \Delta_{i2}, \cdots$, and Δ_{im_i} be mutually disjoint polyhedral semispanning discs in h'_i such that if $1 \le j \le m_i$, $\alpha_{ij} \subset \text{Bd } \Delta_{ij}$. Let $\Delta^*_{i1}, \Delta^*_{i2}, \cdots$, and $\Delta^*_{im_i}$ be mutually disjoint polyhedral 3-cells in h'_i such that if $1 \le j \le m_i$, Δ^*_{ij} is obtained by a slight thickening of Δ_{ij} relative to $\text{Bd } h'_i$, α_{ij} is a straight spanning arc of Δ^*_{ij} , and

 $\Delta_{ij}^* \cap \operatorname{Bd} h_i'$ is a disc on $\operatorname{Bd} \Delta_{ij}^*$. Let $h_i^* = \operatorname{Cl}(h_i' - \bigcup_{j=1}^{m_i} \Delta_{ij}^*)$. Note that if $1 \le j \le m_i$, then $h_i^* \cap \Delta_{ij}^*$ is a disc.

Note that $\{(\operatorname{Bd} h_i) \cap N(x): x \text{ is a vertex, edge, or face of } H \text{ lying in } \operatorname{Bd} h_i\}$ is a disc partitioning \mathscr{P}_i of $\operatorname{Bd} h_i'$. We may assume that if $1 \leq j \leq m_i$, Δ_{ij}^* is disjoint from each N(v) where v is a vertex of H on $\operatorname{Bd} h_i$, and that both $\operatorname{Bd} \Delta_{ij}$ and $((\operatorname{Bd} \Delta_{ij}^*) \cap \operatorname{Bd} h')$ are in general position on $\operatorname{Bd} H_i^*$ relative to the boundary of each disc δ of \mathscr{P}_i . We may also assume that for each such disc δ , and each j, $1 \leq j \leq m_i$, each component of $(\operatorname{Bd} \delta) \cap \Delta_{ij}^*$ contains exactly one point of $(\operatorname{Bd} \delta) \cap \Delta_{ij}$. If l > i, note that $A_l \cap \operatorname{Bd} N_i$ is ϕ , a disc, or is all of A_l . Note that if $A_l \subset \operatorname{Bd} N_i$, then $A_l \cap A_i = \phi$.

Suppose $2 \le k < n$. We shall now construct a partitioning of A_k into discs. Let Y_k be the set of all points p of Bd A_k such that either (1) for some $l \ne k$, p lies on Bd A_l , or (2) for some pair s and t with $1 \le s \le n$ and $1 \le t \le m_s$, p lies on Bd($\Delta_{st}^* \cap \operatorname{Bd} h_s'$). There exist mutually disjoint polyhedral crossing arcs $\beta_{k1}, \beta_{k2}, \cdots$, and β_{kr_k} of A_k such that if B_{k1}, B_{k2}, \cdots , and B_{kr_k} are the discs obtained by partitioning A_k using the β 's, then (1) no endpoint of any β lies in Y_k , (2) if $1 \le l \le r_k$, then neither $B_{kl} \cap \lambda_k$ nor $B_{kl} \cap \mu_k$ contains two distinct points of Y_k , and (3) if s < k, $A_k \cap \operatorname{Bd} A_s$ is disjoint from each of the β 's.

Let

$$M_1=h_1\cup N_1,\, M_2=M_1\cup h_2\cup N_2,\cdots, M_i=M_{i-1}\cup h_i\cup N_i,\cdots,$$
 and $M_{n-1}=M_{n-2}\cup h_{n-1}\cup N_{n-1}.$

Thus if $1 \le i < n$, then $M_i = \bigcup_{j=1}^i (h_j \cup N_j)$.

We are now prepared to construct the partitioning F. We shall construct a cell partitioning F_1 of M_1 , extend this to a cell partitioning F_2 of M_2, \dots , and finally a partitioning F_{n-1} of M_{n-1} . We then construct F.

To construct F_1 , our primary concern is to partition N_1 . Let $\Sigma_1 = \operatorname{Bd} h'_1$ and let Σ'_1 be the boundary component of N_1 distinct from Σ_1 . Σ_1 and Σ'_1 are both 2-spheres, and $\operatorname{Bd} N_1 = \Sigma_1 \cup \Sigma'_1$. Now N_1 is homeomorphic to $\Sigma_1 \times [0,1]$, and we may construct a polyhedral product structure, denoted by $\Sigma_1 \times [0,1]$, identifying Σ_1 and Σ'_1 with $\Sigma_1 \times \{0\}$ and $\Sigma_1 \times \{1\}$, respectively. We may assume that each component of $k \cap N_1$ is a product fiber.

The sets $\Delta_{1j}^* \cap \Sigma_1$, $1 \le j \le m_1$, together with $\Sigma_1 \cap (\operatorname{Bd} h_1^*)$, form a polyhedral partitioning \mathscr{E}_1 of Σ_1 . Let \mathscr{E}_1' be the collection consisting of, for each s > 1, (a) each nonempty set $\Delta_{st}^* \cap \Sigma_1'$, $1 \le t \le m_s$, (b) each nonempty set $(\operatorname{Bd} h_s^*) \cap \Sigma_1'$ and (c) each nonempty set $B_{sq} \cap \Sigma_1'$, $1 \le q \le r_s$. \mathscr{E}_1' is a polyhedral partitioning of Σ_1' .

Let π_1 be projection onto Σ_1 in the product structure described above for N_1 . We may assume that (1-skel \mathscr{E}_1) and π (1-skel \mathscr{E}_1') are in relative general position on Σ_1 . Then there exists a shellable disc partitioning $\mathscr{D}_1 = \langle D_{11}, D_{12}, \cdots, D_{1\nu_1} \rangle$ of Σ_1 such that if $D \in \mathscr{D}_1$, then (1) if E is either a set of \mathscr{E}_1 , or for some set E' of \mathscr{E}_1' , $E = \pi(E')$, then $D \cap E$ is empty or a disc,

(2) Bd D and $(\bigcup \{ \text{Bd } E \colon E \in \mathscr{E}_1 \}) \cup (\bigcup \{ \text{Bd } \pi(E) \colon E \in \mathscr{E}_1' \})$ are in relative general position on Σ_1 , and (3) Bd D and k are disjoint. If $1 \le l \le \nu_1$, let $X_{1l} = D_{1l} \times [0,1]$; we may assume that X_{1l} is polyhedral.

Let F_1 be the set consisting of h_1^* , the Δ_{1j}^* for $1 \leq j \leq m_1$, and the X_{1l} for $1 \leq l \leq \nu_1$. We shall show that F_1 is a cell partitioning of M_1 . For any j, $1 \leq j \leq m_1$, $h_1^* \cap \Delta_{1j}^*$ is a disc, and if $1 \leq l \leq \nu_1$, then since $D_{1l} \cap \operatorname{Bd} h_1^*$ is empty or a disc, $X_{1l} \cap h_1^*$ is empty or a disc. Any two distinct Δ_{1j}^* are disjoint. If $1 \leq j \leq m_1$ and $1 \leq l \leq \nu_1$, then $D_{1l} \cap \Delta_{1j}^*$ is empty or a disc, and thus $X_{1l} \cap \Delta_{1j}^*$ is empty or a disc. Finally, if $1 \leq l < u \leq \nu_1$, and $D_{1l} \cap D_{1u} \neq \phi$, then it is an arc, and hence $X_{1l} \cap X_{1u}$ is a disc. To show that the common part of three intersecting sets of F_1 is an arc, we use the facts that \mathcal{D}_1 is a disc partitioning of Σ_1 , and the Δ_{ij}^* are products in a collar for Σ_1 . A similar argument holds for the case of four elements of F_1 .

Next we shall show that F_1 is shellable. Let

$$\langle h_1^*, \Delta_{11}^*, \Delta_{12}^*, \cdots, \Delta_{1m_1}^*, X_{11}, X_{12}, \cdots, X_{1\nu_1} \rangle$$

be a counting of F_1 . We shall show that this is a shelling of F_1 . Clearly it suffices to show that if we take a set in the counting after the first, and intersect that set with the union of those that precede it, we get a disc. Since the Δ_{1j}^* are mutually disjoint, this holds for h_1^* and all of the Δ_{1j}^* . Now $h_1^* \cup \Delta_{11}^* \cup \cdots \cup \Delta_{1m_1}^*$ is a 3-cell, h_1' , and $\Sigma_1 = \operatorname{Bd} h_1'$. Since $X_{11} \subset \Sigma_1$, then $X_{11} \cap h_1'$ is a disc. Suppose $1 \le l < \nu_1$, and $h_1' \cup X_{11} \cup \cdots \cup X_{1l}$ is a 3-cell Z_{1l} . Since $X_{1,l+1} \cap \Sigma_1$ is the disc $D_{1,l+1}$, and $D_{1,l+1}$ intersects $\bigcup_{l=1}^l D_{1l}$ in an arc α , then $Z_{1l} \cap X_{1,l+1}$ is the union of the two discs $D_{1,l+1}$ and $(\alpha \times [0,1])$, along the arc α . Hence $Z_{1l} \cap X_{1,l+1}$ is a disc. Now $D_{1\nu_1} \cap (\bigcup_{l=1}^{\nu_1-1} D_{1l}) = \operatorname{Bd} D_{1\nu_1}$, and $Z_{1,\nu_1-1} \cap X_{1\nu_1}$ is the union of the disc $D_{1\nu_1}$ and the annulus $(\operatorname{Bd} D_{1\nu_1}) \times [0,1]$, along the boundary of $D_{1\nu_1}$. Thus, $Z_{1,\nu_1-1} \cap X_{1\nu_1}$ is a disc. Hence the indicated counting is a shelling of F_1 .

We shall now extend F_1 to a shellable cell partitioning F_2 of M_2 . Our primary concern is with partitioning N_2 . Recall that N_2 is a 3-cell. Let $\Sigma_2 = (\operatorname{Bd} N_2) \cap (\operatorname{Bd} h_2')$. Recall that $A_2 = (\operatorname{Bd} N_2) \cap (\operatorname{Bd} N_1)$. Let $\Sigma_2' = (\operatorname{Bd} N_2) - \operatorname{Int}(A_2 \cup \Sigma_2)$. Σ_2 and Σ_2' are discs, and $\operatorname{Bd} N_2 = \Sigma_2 \cup A_2 \cup \Sigma_2'$. Now N_2 is homeomorphic to $\Sigma_2 \times [0,1]$, and we may construct a polyhedral product structure, denoted by $\Sigma_2 \times [0,1]$, identifying Σ_2 , Σ_2' , and N_2 with $N_2 \times \{0\}$, $N_2 \times \{1\}$, and $N_2 \times \{0\}$, are fibers in the product structure, and so is each component of N_2 .

The sets $\Delta_{2j}^* \cap \Sigma_2$, $1 \le j \le m_2$, together with $\Sigma_2 \cap (\operatorname{Bd} h_2^*)$, form a polyhedral partitioning \mathscr{E}_2 of Σ_2 . Let \mathscr{E}_2' be the collection consisting of, for each s > 2, (a) each nonempty set $\Delta_{st}^* \cap \Sigma_2'$, $1 \le t \le m_s$, (b) each nonempty set $(\operatorname{Bd} h_s^*) \cap \Sigma_2'$, and (c) each nonempty set $B_{sq} \cap \Sigma_2'$, $1 \le q \le r_s$. \mathscr{E}_2' is a polyhedral partitioning of Σ_2' .

Let π_2 be projection onto Σ_2 in the product structure described above for N_2 . We may assume that (1-skel \mathscr{E}_2) and π (1-skel \mathscr{E}_2') are in relative general

position of Σ_2 . There exists a ring partitioning

$$\mathcal{D}_2 = \{D_{21}, D_{22}, \cdots, D_{2r_2}, \cdots, D_{2\nu_2}\}$$

of Σ_2 such that (1) if $D \in \mathcal{D}_2$, then (a) if E is either a set of \mathcal{E}_2 or for some set E' of \mathcal{E}_2' , $E = \pi(E')$, then $D \cap E$ is empty or a disc, and (b) (Bd D) and k are disjoint, (2) the central disc $D_{2\nu_2}$ of \mathcal{D}_2 is disjoint from every Δ_{st}^* , $2 < s \le n$, and $1 \le t \le m_s$, and from every A_s , $2 \le s < n$, and (3) $\langle D_{21}, D_{22}, \cdots, D_{2r_2}, \cdots, D_{2\nu_2} \rangle$ is a ring shelling of \mathcal{D}_2 . We may also assume that the outer ring Ω_2 of \mathcal{D}_2 is narrow, and the discs of Ω_2 are D_{21}, D_{22}, \cdots , and D_{2r_2} where for $1 \le w \le r_2$,

$$D_{2w} \cap (\operatorname{Bd} \Sigma_2) = B_{2w} \cap (\operatorname{Bd} \Sigma_2).$$

If $1 \le l \le \nu_2$, let $X_{2l} = D_{2l} \times [0, 1]$; we may assume X_{2l} is polyhedral.

Let F_2 be the set consisting of the sets of F_1 together with h_2^* , the Δ_{2j}^* for $1 \le j \le m_2$, and the X_{2l} for $1 \le l \le \nu_2$. We shall show that F_2 is a cell partitioning of M_2 . A part of this proof may be gotten by modifying the argument above that F_1 is a cell partitioning of M_1 . We need only consider how sets of F_2 in M_1 intersect those in $h'_2 \cup N_2$. Any set in h_2^* , Δ_{21}^* ,..., and $\Delta_{2m_2}^*$ is disjoint from each set of h_1^* , Δ_{11}^* ,..., and $\Delta_{1m_1}^*$. If F is either h_2^* or for some f_1 , f_2 is f_3 , is f_4 , then by construction of f_4 , if f_4 is empty or a disc. Hence if f_4 is then f_4 or a disc.

Now suppose $F \in F_2$, $F \subset N_2$, and F intersects M_1 . Then F intersects A_2 , and hence for some disc D_{2q} of the outer ring of \mathscr{D}_2 , $F = D_{2q} \times [0, 1]$. Further, by the construction of the product structure $\Sigma_2 \times [0, 1]$, $F \cap A_2 = B_{2q}$. By construction of \mathscr{D}_1 , if a set D of \mathscr{D}_1 intersects B_{2q} , their common part is a disc. It follows that if $X \in F_1$ and X intersects F, then $X \cap F$ is a disc. It now follows that F_2 is a cell partitioning of M_2 .

Next we shall show that F_2 is shellable. Let $\langle h_1^*, \bar{\Delta}_{11}^*, \cdots, \Delta_{1m_1}^*, X_{11}, \cdots, X_{1\nu_1}, X_{21}, X_{22}, \cdots, X_{2r_2}, \cdots, X_{2,\nu_1-1}, \Delta_{21}^*, \cdots, \Delta_{2m_2}^*, h_2^*, X_{2\nu_2} \rangle$ be a counting of F_2 . Note that we count the "plug" $X_{2\nu_2}$ last. We shall show that this counting is a shelling of F_2 . We only need to consider those sets of F_2 not in F_1 . Recall that $\bigcup \{F: F \in F_1\} = M_1$.

Since $X_{21}\cap A_2$ is the disc B_{21} , it follows that $X_{21}\cap M_1=B_{21}$. If $1< l< r_2$, then $X_{2l}\cap A_2$ is the disc B_{2l} , and since $B_{2l}\cap B_{2,l-1}$ is an arc, then $X_{2l}\cap X_{2,l-1}$ is a disc. These discs intersect in one of the β 's, and hence X_{2l} intersects the union of those before it in the counting in a disc. X_{2r_2} intersects M_1 in a disc B_{2r_2} , intersects X_{2,r_2-1} in a disc, intersects X_{21} in a disc, and the union of these three is a disc. A similar argument holds for each other ring in the partitioning \mathcal{D}_2 . Thus $h_1 \cup N_1 \cup (\bigcup_{l=1}^{\nu_2-1} X_{2l})$ is a 3-cell Z_{2,ν_2-1} . Clearly for each $j, 1 \leq j \leq m_2, Z_{2,\nu_2-1} \cap \Delta_{2j}^*$ is a disc. $[(Z_{2,\nu_2-1}) \cup (\bigcup_{j=1}^{m_2} \Delta_{2j}^*)] \cap h_2^*$ is the disc $(Bd h_2^*) - Int D_{2\nu_2}$. It follows that the union of all the cells of F_2 except $X_{2\nu_2}$ is a 3-cell W_{2,ν_2-1} . $X_{2\nu_2} \cap W_{2,\nu_2-1}$ is the union of the disc $D_{2\nu_2}$ and the annulus $(Bd D_{2\nu_2}) \times [0,1]$, and is a disc. Hence F_2 is shellable.

We continue this process, constructing a shellable cell partitioning F_3 of M_3 that extends F_2 , a shellable cell partitioning F_4 of M_4 that extends F_3 , and so on. Suppose $2 < i < n, F_{i-1}$ has been constructed, and is a shellable cell partitioning of M_{i-1} . We construct F_i by first partitioning N_i , using a ring partitioning in a manner analogous to that of the construction of F_2 . As part of this, we construct a "plug" for N_i . Then we define F_i to consist of the cells of F_{i-1} , the cells partitioning N_i , the Δ_{ii}^* , and h_i^* .

To prove that F_i is a cell partitioning of M_i , we may modify the arguments given for F_1 and F_2 . The main additional point to be considered involves cells F of F_i lying in N_i and intersecting Bd A_s for some s < i. Then F intersects A_i , and for some j, $1 \le j \le r_i$, $F \cap A_i = B_{ij}$. Suppose F intersects a cell F' of F_s such that F' lies in N_s and intersects A_s . Then A_i intersects Bd A_s in a single spanning arc of A_i . For some k, $1 \le k \le r_s$, $F' \cap A_s = B_{sk}$, and F' is a slight thickening, relative to N_s , of B_{sk} . It follows that $F \cap F'$ is a disc. In showing that no four sets of F_i have any arc in common, we may use the fact that $\mathcal{N} \cup \{h'_i : 1 \le i \le n\}$ is a cell partitioning of S^3 .

We order F_i by first counting the cells of F_{i-1} , following the given shelling, then the cells of F_i in N_i , using a ring shelling of the ring partitioning involved, except that we do not count the "plug." We then count the Δ_{ij}^* , then h_i^* , and finally the "plug." It is easily seen that this is a shelling of F_i .

Suppose that we have defined F_{n-1} . Note that F_{n-1} covers S^3 – Int h'_n . We now define F to be the set consisting of the cells of F_{n-1} , the Δ^*_{nj} for $1 \le j \le m_n$, and h^*_n . Clearly F is a cell partitioning of S^3 . To obtain a shelling for F, we first count F_{n-1} as above, then $\Delta^*_{n1}, \Delta^*_{n2}, \cdots$, and Δ_{nm_n} , and finally h^*_n .

Finally, k is compatible with F and $|\pi(k, F)| = 2|\pi(k, H)|$. To see this, note that (1) each Δ_{ij}^* contains exactly one spanning arc lying on k, and this arc is straight in Δ_{ij}^* , and (2) if $p \in k \cap (2\text{-skel } H)$, there is some X_{st} such that $k \cap X_{st}$ is a single spanning arc of X_{st} containing p, and this arc is straight in X_{st} . \square

LEMMA 5. If $\langle h_1, h_2, \dots, h_n \rangle$ is a shelling of a polyhedral cell partitioning of S^3 , and 1 < i < n, then $(h_1 \cup h_2 \cup \dots \cup h_{i-1}) \cap h_i$ is a disc.

Proof. Suppose 1 < i < n, and let $H_{i-1} = h_1 \cup h_2 \cup \cdots \cup h_{i-1}$, $H_i = H_{i-1} \cup h_i$, and $D_i = H_{i-1} \cap h_i$. Then both H_{i-1} and H_i are 3-cells, and each component of D_i is a punctured disc.

Suppose D_i is not connected, and let A and B be distinct components of D_i . There is a polyhedral simple closed curve J on Bd H_{i-1} disjoint from D_i and separating A from B on Bd H_{i-1} . Let Δ be the disc on Bd H_{i-1} bounded by J and containing A. Let α be a polyhedral spanning arc of H_{i-1} from a point x of Int A to a point y of Int B. Let β be a polyhedral spanning arc of h_i from x to y. Then $\alpha \cup \beta$ and J are disjoint polyhedral simple closed curves in S^3 , and, by considering Δ , can be seen to be linked in

 S^3 . Since $\alpha \cup \beta \subset \text{Int } H_i$ and $J \cap \text{Int } H_i = \phi$, this is a contradiction. Hence D_i is a punctured disc.

Suppose Bd D_i is not connected. Suppose K and L are distinct boundary curves of D_i , and let U and V be the components of $(\operatorname{Bd} H_{i-1}) - D_i$ bounded by K and L, respectively. Then \overline{U} is a disc, and U and V lie on Bd H_i . Let α' be a polyhedral spanning arc of H_{i-1} from a point x' of U to a point y' of V, and let β' be a polyhedral spanning arc of S^3 — Int H_i from x' to y'. Then $\alpha' \cup \beta'$ and K are disjoint polyhedral simple closed curves in S^3 , and, by considering \overline{U} , can be seen to be linked. Since $K \subset h_i$ and $\alpha' \cup \beta' \cap h_i = \phi$, this is a contradiction. Hence D_i is a disc. \square

4. Nonshellable cell partitionings of S^3

In this section, we shall describe two examples whose constructions use the ideas of the preceding part of this paper. The first is a nonshellable cell partitioning of S^3 . The second is a nest of cell partitionings of S^3 , each partitioning of the nest being nonshellable.

To construct the first example, let k be a trefoil knot in S^3 . It is known that k has bridge number 2 [8]. Let T be a polyhedral tubular neighborhood of k; T is a solid torus. Divide T into three polyhedral chambers T_1 , T_2 , and T_3 by using polyhedral meridional disc of T, each intersecting k in exactly one point. See Figure 2. It is easy to construct a polyhedral cell partitioning T of T0 which includes T1, T2, and T3 among the 3-cells of T3. Clearly, T3 is

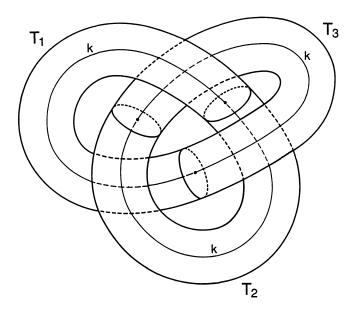


Fig. 2

compatible with H, and $\pi(k, h) = 3$. By Theorem 1, H is nonshellable. For additional examples of nonshellable cell partitionings of S^3 , see [2].

For the second example, we shall need some definitions. If A and B are two coverings of a set X, then B refines A if and only if each set of B lies in some set of A. A nest of polyhedral cell partitionings of S^3 is a sequence $\{H_1, H_2, H_3, \cdots\}$ of polyhedral cell partitionings of S^3 such that (1) for each positive integer n, H_{n+1} refines H_n , (2) if m and n are positive integers and m > n, then for each cell h of H_n , the set of all 3-cells of H_m lying in h is a cell partitioning of h, (3) as $n \to \infty$, (mesh H_n) $\to 0$, and (4) certain natural general position conditions are satisfied (see [1]). The conditions of (4) can be obtained by the standard type of small adjustment, so we shall not consider them here.

The second example is a polyhedral nest $\{H_1, H_2, H_3, \dots\}$ of cell partitionings of S^3 such that for each positive integer n, H_n is nonshellable.

Let H_1 be the cell partitioning of the example above. Let k_1 denote the trefoil knot used in that construction. The knot k_1 lies in a tubular neighborhood T of k_1 , and T is cut into three 3-cells T_1 , T_2 , and T_3 . Let $W_1 = T$. Note that br $k_1 = 2$ and $|\pi(k_1, H_1)| = 3$. As noted above, H_1 is non-shellable. We may make the construction of H_1 so that if L is the arc length of the knot k_1 , then (mesh H_1) $< \frac{1}{2}L$.

If i=1, 2, or 3, replace $k_1 \cap T_i$ by a polygonal spanning arc knotted in a trefoil, with the same endpoints as $k_1 \cap T_i$. This yields a knot k_2 in Int W_1 . See Figure 3.

Now k_2 is the composite of the trefoil k_1 with three other trefoil knots, one in each of T_1 , T_2 , and T_3 . With the aid of the following lemma from [8] we may show that br $k_2 = 2 + 3$.

LEMMA 5. If s and t are two knots in S^3 and s#t is a composite of s and t, then $br(s\#t) = (br\ s) + (br\ t) - 1$.

Let W_2 be a very close tubular neighborhood of k_2 . For each i, i = 1, 2, or 3, divide $W_2 \cap T_i$ into three 3-cells by meridional discs in W_2 . If i = 1, 2, or 3, let the resulting 3-cells of W_2 in T_i be denoted by T_{i1} , T_{i2} , and T_{i3} .

We may make the construction of k_2 and W_2 such that if i=1, 2, or 3, then (diam T_{ij}) $< \frac{1}{4}L$. It is easy to construct a polyhedral cell partitioning H_2 of S^3 such that (1) H_2 refines H_1 (2) if $h \in H_1$, the cells of H_2 in h form a partitioning of h, and (3) (mesh H_2) $< \frac{1}{4}L$.

Continue this process. Suppose that n is a positive integer and H_n has been constructed. Then there exist a knot k_n and a tubular neighborhood W_n of k_n . W_n is divided into 3^n 3-cells, each of which belongs to H_n and each of which has diameter less than $L/2^n$. If T is one of these 3-cells, then $k_n \cap T$ is a straight spanning arc of T. Further,

br
$$k_n = 2 + 3 + 3^2 + \cdots + 3^{n-1}$$
.

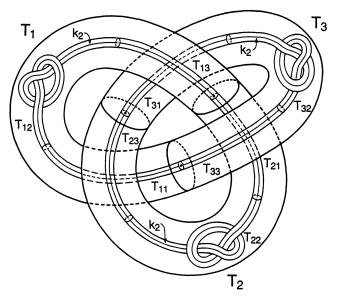


Fig. 3

Since $2 \operatorname{br} k_n = 3^n + 1$ and $|\pi(k_n, H_n)| = 3^n$, then, by Theorem 1, H_n is nonshellable.

For each such 3-cell T, replace $k_n \cap T$ by a polygonal spanning arc knotted in a trefoil, with the same endpoints as $k_n \cap T$, and such that it can be cut into three subarcs, each of diameter less than $L/2^{n+1}$. This yields a knot k_{n+1} in Int W_n . Then k_n is the composite of k_n and 3^n trefoil knots. By Lemma 5,

br
$$k_{n+1} = \frac{3^n + 1}{2} + 3^n = \frac{3^{n+1} + 1}{2}$$
.

Let W_{n+1} be a close tubular neighborhood of k_{n+1} . Cut W_{n+1} into 3^{n+1} 3-cells by using discs on the 2-skeleton of H_n and additional meridional discs of W_{n+1} , so that each 3-cell T as above contains exactly three of the 3-cells from W_{n+1} . We may make this construction so that each of the resulting 3-cells from W_{n+1} has diameter less than $L/2^{n+1}$.

There is a polyhedral cell partitioning H_{n+1} of S^3 that includes the 3-cells from W_{n+1} constructed above and has mesh less than $L/2^{n+1}$. Since $2 \operatorname{br} k_{n+1} = 3^{n+1} + 1$ and $|\pi(k_{n+1}, H_{n+1})| = 3^{n+1}$, it follows by Theorem 1 that H_{n+1} is nonshellable.

Thus by induction, there exist polyhedral cell partitionings H_1, H_2, H_3, \cdots of S^3 as described above. It is easily verified that $\{H_1, H_2, H_3, \cdots\}$ is a nest of polyhedral cell partitionings of S^3 . By construction, for each positive integer n, H_n is nonshellable.

REFERENCES

- [1] S. Armentrout, Nests of cell partitionings of closed 3-manifolds, to appear.
- [2] _____, Links and nonshellable cell partitionings of S^3 , to appear.
- [3] R. H. Bing, "Some aspects of the topology of 3-manifolds related to the Poincaré conjecture" in *Lectures on Modern Mathematics*, T. L. Saaty, ed., Wiley, 1964, pp. 93-128.
- [4] R. E. GOODRICK, Non-simplicially collapsible triangulations of Iⁿ, Proc. Camb. Phil. Soc. 64 (1968), 31–36.
- [5] C. KEARTON and W. B. R. LICKORISH, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415-424.
- [6] W. B. R. LICKORISH, Unshellable triangulations of spheres, European J. Combin. 12 (1991), 527-530.
- [7] W. B. R. LICKORISH and J. M. MARTIN, Triangulations of the 3-ball with knotted spanning 1-simplexes and collapsible rth derived subdivisions, Trans. Amer. Math. Soc. 137 (1969) 451-458.
- [8] H. Schubert, Uber eine numerische Knoteninvariante, Math. Zeitschr. 61 (1954), 245-288.

THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA