Hiroshima Mathematical Journal

Periodic solutions for certain time-dependent variational inequalities

Toshitaka Nagai

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 5, Number 3 (1975), 537-549.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206136545

Digital Object Identifier
doi:10.32917/hmj/1206136545

Mathematical Reviews number (MathSciNet)
MR0388186

Zentralblatt MATH identifier
0348.35052

Subjects
Primary: 47H15
Secondary: 35R20: Partial operator-differential equations (i.e., PDE on finite- dimensional spaces for abstract space valued functions) [See also 34Gxx, 47A50, 47D03, 47D06, 47D09, 47H20, 47Jxx]

Citation

Nagai, Toshitaka. Periodic solutions for certain time-dependent variational inequalities. Hiroshima Math. J. 5 (1975), no. 3, 537--549. doi:10.32917/hmj/1206136545. https://projecteuclid.org/euclid.hmj/1206136545


Export citation

References

  • [1] H. Attouch, Ph.Benilan, A. Damlamian and C. Picard, Equations d'evolution avec condition unilateral^ C.R. Acad. Sci. Paris Ser. A-B 279 (1974), A607-A609.
  • [2] H.Attouch andA. Damlamian, Problemes d'evolution danles Hubert et applications, preprint.
  • [3] Ph.Benilan, Solutions periodiques, Seminaire d'Orsay 1970/71.
  • [4] Ph.Benilan and H. Brezis, Solutions faible d'equations d'evolution dan les espaces de Hubert, Ann. Inst. Fourier, Grenoble 22 (1970), 311-329.
  • [5] H. Brezis, Problemes unilateraux, J. Math. Pures Appl. 51 (1972), 1-168.
  • [6] F.E. Browder, Problemes non lineaires, Montreal Univ. Press, Montreal, 1966.
  • [7] F.E. Browder andW. V. Petryshyn, Thesolution by iteration of nonlinear functional equations in Banach space, Bull. Amer. Math. Soc.72 (1966), 571-575.
  • [8] N,Kenmochi, The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities, Proc. Japan Acad. 50 (1974), 714-717.
  • [9] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math.(to appear).
  • [10] N. Kenmochi and T. Nagai, Weak solutions for certain nonlinear time-dependent parabolic variational inequalities, Hiroshima Math. J. (to appear).