Periodic Solutions for Certain Time-dependent Parabolic Variational Inequalities

Toshitaka NagaI

(Received May 20, 1975)

Introduction

For a real Banach space V we denote by V^{*} the dual space of V, by $\|\cdot\|_{V}$ and $\|\cdot\|_{V^{*}}$ the norms in V and V^{*}, respectively, and by $(\cdot, \cdot)_{V}$ the natural pairing between V^{*} and V . A (multivalued) operator A from a Banach space V into its dual V^{*} (i.e., assigning to each $v \in V$ a subset $A v$ of V^{*}) is called monotone if

$$
\left(v^{*}-w^{*}, v-w\right)_{v} \geqq 0 \quad \text { for any } \quad\left[v, v^{*}\right],\left[w, w^{*}\right] \in G(A),
$$

where $G(A)$ is the graph of the operator A, i.e.,

$$
G(A)=\left\{\left[v, v^{*}\right] \in V \times V^{*}: v \in D(A) \text { and } v^{*} \in A v\right\}
$$

with $D(A)=\{v \in V: A v \neq \phi\}$. If A is monotone and there is no proper monotone extension of A, then A is called maximal monotone.

Throughout this paper we let H be a Hilbert space and X a Banach space such that $X \subset H, X$ is dense in H and the natural injection from X into H is continuous, and suppose that X is uniformly convex and X^{*} is strictly convex. Identifying H with its dual space by means of the inner product $(\cdot, \cdot)_{H}$ in H, we have the relation $X \subset H \subset X^{*}$. By the symbols " \xrightarrow{s} " and " \xrightarrow{w} " we mean the convergence in the strong and weak topology, respectively.

Let $0<T<\infty, 2 \leqq p<\infty$ and $1 / p+1 / p^{\prime}=1$ and let ψ be an extended realvalued function on $[0, T] \times X$ such that for each $t \in[0, T], \psi(t ; \cdot)$ is a lower semicontinuous convex function on X with values in $(-\infty,+\infty], \psi(t ; \cdot) \not \equiv+\infty$, and such that for each $v \in L^{p}(0, T ; X), t \rightarrow \psi(t ; v(t))$ is measurable on [0, T]. We define a functional Ψ on $L^{p}(0, T ; X)$ by

$$
\Psi(v)= \begin{cases}\int_{0}^{T} \psi(t ; v(t)) d t & \text { if } \quad v \in D(\Psi), \\ +\infty & \text { otherwise }\end{cases}
$$

where $D(\Psi)=\left\{v \in L^{p}(0, T ; X): t \rightarrow \psi(t ; v(t))\right.$ is integrable on $\left.(0, T)\right\}$.
We now pose the following problem: Given an $f \in L^{p \prime}\left(0, T ; X^{*}\right)$, find a $u \in D(\Psi) \cap C([0, T] ; H)$ such that
(i) $u(0)=u(T)$,
(ii) $u^{\prime}(=(d / d t) u) \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$,
(iii) $\int_{0}^{T}\left(u^{\prime}-f, u-v\right)_{X} d t \leqq \Psi(v)-\Psi(u) \quad$ for every $\quad v \in D(\Psi)$.

This problem is referred to as the problem $P[\psi, f]$. A weak solution of the problem $P[\psi, f]$ is defined to be a function $u \in D(\Psi)$ which satisfies

$$
\int_{0}^{T}\left(v^{\prime}-f, u-v\right)_{X} d t \leqq \Psi(v)-\Psi(u)
$$

whenever $v \in D(\Psi) \cap C([0, T] ; H), v^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and $v(0)=v(T)$.
We consider the following operator M_{p} (resp. S_{p}) from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right):[u, f] \in G\left(M_{p}\right)$ (resp. $G\left(S_{p}\right)$) if and only if u is a weak (resp. strong) solution of the problem $P[\psi, f]$.

The purpose of this paper is to prove under appropriate assumptions on ψ and f the existence of a strong solution of the problem $P[\psi, f]$ and then to investigate the properties of the operators M_{p} and S_{p}. In Section 1 we summarize some results concerning the initial value problem for the above inequality (iii) (cf. $[1,2,8,9,10]$). In Section 2 we show that the problem $P[\psi, f]$ has a strong solution by using the results of Section 1 and a fixed point theorem of Browder and Petryshyn [7]. In Section 3 we show that M_{p} is a maximal monotone operator from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and is a kind of closure of S_{p}. This result extends a theorem of Brèzis [5, Theorem II.16] to the time-dependent case.

The author would like to thank Professor N. Kenmochi for his kind advice and any many helpful suggestions.

1. Initial value problem

Let $\{\psi(t ; \cdot): 0 \leqq t \leqq T\}$ be a family of functions as described in the introduction. We put

$$
D_{t}=\{z \in X: \psi(t ; z)<\infty\} \quad \text { for each } \quad t \in[0, T]
$$

and $D_{H}=\left\{\right.$ the closure of D_{0} in $\left.H\right\}$.
We impose the following two hypotheses on ψ.
($\psi .1$) There is a positive constant C with the property: For each $t \in[0, T]$, $z \in D_{\iota}$ and $s \in[t, T]$, there is $\tilde{z} \in D_{s}$ such that

$$
\begin{aligned}
& \|z-\tilde{z}\|_{X} \leqq C|t-s|, \quad \text { and } \\
& \psi(s ; \tilde{z}) \leqq \psi(t ; z)+C|t-s|\left(1+\|z\|_{X}^{p}+|\psi(t ; z)|\right)
\end{aligned}
$$

($\psi .2$) There are positive constants b_{0}, b_{1} and b_{2} such that

$$
\psi(t ; z)+b_{0}\|z\|_{X}+b_{1} \geqq b_{2}[z]_{X}^{p} \quad \text { for any } t \in[0, T] \text { and } z \in X \text {, }
$$

where $[\cdot]_{X}$ is a seminorm on X so that $[\cdot]_{X}+\|\cdot\|_{H}$ gives a norm on X which is equivalent to the norm $\|\cdot\|_{X}$.

Under these hypotheses we have the following
Proposition 1 (Kenmochi [8,9]). (1) For any given $u_{0} \in D_{0}$ and $f \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with $f^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$, there exists a function $u \in D(\Psi)$ $\cap C([0, T] ; H)$ such that

$$
\left\{\begin{array}{l}
u(0)=u_{0}, \quad u^{\prime} \in L^{2}(0, T ; H), \\
t \longrightarrow \psi(t ; u(t)) \text { is bounded on }[0, T], \text { and } \tag{1.1}\\
\int_{0}^{T}\left(u^{\prime}-f, u-v\right)_{X} d t \leqq \Psi(v)-\Psi(u) \quad \text { for every } \quad v \in D(\Psi) .
\end{array}\right.
$$

(2) Let u_{i} be a function in $D(\Psi) \cap C([0, T] ; H)$ which satisfies (1.1) for $u_{0}=u_{0, i} \in D_{0}$ and $f=f_{i} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with $f_{i}^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)(i=1,2)$. Then, for $s, t \in[0, T]$ with $s \leqq t$,

$$
\begin{equation*}
\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2}-\left\|u_{1}(s)-u_{2}(s)\right\|_{H}^{2} \leqq 2 \int_{s}^{t}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d r \tag{1.2}
\end{equation*}
$$

Using Proposition 1 and a result in [10] we can prove the following proposition.

Proposition 2. (1) For any given $u_{0} \in D_{H}$ and $f \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$, there exists a function $u \in D(\Psi) \cap C([0, T] ; H)$ such that

$$
\left\{\begin{array}{l}
u(0)=u_{0}, \quad \text { and } \\
\left\{\begin{array}{l}
T \\
0
\end{array}\left(v^{\prime}-f, u-v\right)_{X} d t-\frac{1}{2}\left\|u_{0}-v(0)\right\|_{H}^{2} \leqq \Psi(v)-\Psi(u)\right. \tag{1.3}\\
\text { for every } \quad v \in D(\Psi) \cap C([0, T] ; H) \text { with } v^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right) .
\end{array}\right.
$$

(2) If u_{i} is a function in $D(\Psi) \cap C([0, T] ; H)$ satisfying (1.3) with u_{0} $=u_{0, i} \in D_{H}$ and $f=f_{i} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)(i=1,2)$, then the inequality (1.2) holds for any $s, t \in[0, T]$ with $s \leqq t$.

Proof. The assertion (2) is true by Corollary 1 of [10]. Hence, we need only to verify the assertion (1). For this purpose choose sequences $\left\{u_{0, n}\right\} \subset D_{0}$ and $\left\{f_{n}\right\} \subset L^{p^{\prime}}\left(0, T ; X^{*}\right)$ such that $f_{n}^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right), u_{0, n} \xrightarrow{s} u_{0}$ in H and $f_{n} \xrightarrow{s} f$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$. By Proposition 1 there exists, for each n, a function $u_{n} \in D(\Psi)$ $\cap C([0, T] ; H)$ satisfying (1.1) with $u_{0}=u_{0, n}$ and $f=f_{n}$. Since

$$
\int_{0}^{T}\left(u_{n}^{\prime}-f_{n}, u_{n}-v\right)_{X} d t \leqq \Psi(v)-\Psi\left(u_{n}\right) \quad \text { for every } \quad v \in D(\Psi)
$$

we have by integration by parts

$$
\begin{equation*}
\int_{0}^{T}\left(v^{\prime}-f_{n}, u_{n}-v\right)_{X} d t-\frac{1}{2}\left\|u_{0, n}-v(0)\right\|_{H}^{2} \leqq \Psi(v)-\Psi\left(u_{n}\right) \tag{1.4}
\end{equation*}
$$

for every $v \in D(\Psi) \cap C([0, T] ; H)$ with $v^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$. Taking u_{1} as v in (1.4) and using the assumption ($\psi .2$), we obtain

$$
\begin{align*}
& b_{2} \int_{0}^{T}\left[u_{n}(t)\right]_{X}^{p} d t \leq b_{1} T+\Psi\left(u_{1}\right)+\frac{1}{2}\left\|u_{0, n}-u_{0,1}\right\|_{H}^{2} \tag{1.5}\\
& \quad+\int_{0}^{T}\left(f_{n}-u_{1}^{\prime}, u_{1}\right)_{X} d t+\int_{0}^{T}\left(b_{0}+\left\|f_{n}-u_{1}^{\prime}\right\|_{X^{*}}\right)\left\|u_{n}\right\|_{X} d t
\end{align*}
$$

On the other hand, it follows from the inequality (1.2) that for any $t \in[0, T]$

$$
\begin{aligned}
& \left\|u_{n}(t)-u_{1}(t)\right\|_{H}^{p} \\
& \leq 2^{p}\left\|u_{0, n}-u_{0,1}\right\|_{H}^{p}+2^{p+1}\left(\int_{0}^{T}\left\|f_{n}-f_{1}\right\|_{X^{*}}\left\|u_{n}-u_{1}\right\|_{X} d t\right)^{p / 2} \\
& (1.6) \leqq 2^{p}\left\|u_{0, n}-u_{0,1}\right\|_{H}^{p}+2^{p+1}\left(\int_{0}^{T}\left\|f_{n}-f_{1}\right\|_{X^{*}}^{p^{\prime}} d t\right)^{p / 2 p^{\prime}}\left(\int_{0}^{T}\left\|u_{n}-u_{1}\right\|_{X}^{p} d t\right)^{1 / 2} \\
& \leq 2^{p}\left\|u_{0, n}-u_{0,1}\right\|_{H}^{p}+\frac{2^{p}}{\varepsilon}\left(\int_{0}^{T}\left\|f_{n}-f_{1}\right\|_{X^{*}}^{p} d t\right)^{p / p^{\prime}} \\
& \\
& \quad+\frac{\varepsilon}{2} \int_{0}^{T}\left\|u_{n}-u_{1}\right\|_{X}^{p} d t
\end{aligned}
$$

where ε is an arbitrary positive number. Noting that $\|\cdot\|_{X}$ is equivalent to $[\cdot]_{X}$ $+\|\cdot\|_{H}$, we see from (1.5) and (1.6) that $\left\{u_{n}\right\}$ is bounded in $L^{p}(0, T ; X)$. By (1.4) and $(\psi .2)$ it follows that $\left\{\Psi\left(u_{n}\right)\right\}$ is bounded.

Now, the inequality (1.2) implies that $\left\{u_{n}\right\}$ converges in H uniformly on $[0, T]$ to a function $u \in C([0, T] ; H)$ with $u(0)=u_{0}$. Then, obviously, $u \in L^{p}(0, T ; X)$, $u_{n} \xrightarrow{w} u$ in $L^{p}(0, T ; X)$ as $n \rightarrow \infty$, and since Ψ is lower semicontinuous on $L^{p}(0, T$; X) by ($\psi .1$) and ($\psi .2$),

$$
-\infty<\Psi(u) \leqq \liminf _{n \rightarrow \infty} \Psi\left(u_{n}\right)<+\infty
$$

Letting $n \rightarrow \infty$ in (1.4), we see that u is the desired function.
The following is an immediate consequence of Propositions 1 and 2.
Proposition 3. (1) For any given $u_{0} \in D_{H}$ and $f \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with $f^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$, there is a function $u \in D(\Psi) \cap C([0, T] ; H)$ such that $u(0)=u_{0}$ and the following holds for each $\delta \in(0, T]$:

$$
\left\{\begin{array}{l}
u^{\prime} \in L^{2}(\delta, T ; H), \\
t \longrightarrow \psi(t ; u(t)) \text { is bounded on }[\delta, T], \text { and } \tag{1.7}\\
\int_{\delta}^{T}\left(u^{\prime}-f, u-v\right)_{X} d t \leqq \int_{\delta}^{T}\{\psi(t ; v(t))-\psi(t ; u(t))\} d t \\
\text { for every } v \in D(\Psi) .
\end{array}\right.
$$

(2) Let u_{i} be a function in $D(\Psi) \cap C([0, T] ; H)$ which satisfies (1.7) for $u_{0}=u_{0, i} \in D_{H}$ and $f=f_{i} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with $f_{i}^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)(i=1,2)$. Then the inequality (1.2) holds for any $s, t \in[0, T]$ with $s \leqq t$.

Remark 1.1. In case $X=H$ and $p=2$ the hypothesis ($\psi .1$) can be replaced by the following weaker one:
$(\psi .1)^{\prime} \quad$ There is a positive nondecreasing function $r \rightarrow C(r)$ with the following property: For each $r>0$, each pair $s, t \in[0, T], s \leqq t$, and for each $z \in D_{s}$ with $\|z\|_{H} \leqq r$ there is $\tilde{z} \in D_{t}$ such that

$$
\|\tilde{z}-z\|_{H} \leqq C(r)|t-s|
$$

and

$$
\psi(t ; \tilde{z}) \leqq \psi(s ; z)+C(r)|t-s|(1+|\psi(s ; z)|) .
$$

In this case Propositions 1, 2 and 3 hold without the condition $f^{\prime} \in L^{2}(0, T ; H)$, and moreover, the function u appearing in the first statement of Proposition 2 (and 3) is such that $t \rightarrow t \psi(t ; u(t)$) is bounded on ($0, T$] (cf. [9]).

2. Existence of a strong solution of $\boldsymbol{P}[\boldsymbol{\psi}, \boldsymbol{f}]$

Let $\{\psi(t ; \cdot): 0 \leqq t \leqq T\}$ be a family of functions as described in the introduction. Throughout this section it is assumed that this family satisfies in addition to $(\psi .1)$ the assumptions ($\psi .2)^{\prime}$ and ($\psi .3$) given below.
$(\psi .2)^{\prime} \quad$ There are positive constants C_{1} and C_{2} such that

$$
\psi(t ; z) \geqq C_{1}\|z\|_{X}^{p}-C_{2} \quad \text { for all } \quad t \in[0, T] \text { and } z \in X
$$

($\psi .3) \quad D_{T} \subset D_{0}$, i.e., $\{z \in X: \psi(T ; z)<\infty\} \subset\{z \in X: \psi(0 ; z)<\infty\}$.
The objective here is to prove the existence of a strong solution of the problem $P[\psi, f]$ using a fixed point theorem of Browder and Petryshyn [7] and techniques similar to those developed in [3] and [4].

Lemma 1. Let $f \in L^{\infty}\left(0, T ; X^{*}\right)$ and let $\left\{u_{n}\right\} \subset D(\Psi) \cap C([0, T] ; H)$ be a sequence such that $u_{n}^{\prime} \in L^{2}(0, T ; H)$ and

$$
\int_{0}^{T}\left(u_{n}^{\prime}-f, u_{n}-v\right)_{X} d t \leqq \Psi(v)-\Psi(u) \quad \text { for every } \quad v \in D(\Psi)
$$

If the sequence $\left\{\left\|u_{n}(0)\right\|_{H}-\left\|u_{n}(T)\right\|_{H}\right\}$ is bounded above, then the sequence $\left\{u_{n}(T)\right\}$ is bounded in H and moreover, $\left\{u_{n}\right\}$ is bounded in $C([0, T] ; H)$.

Proof. In view of (2) of Proposition 1 we see that

$$
\begin{equation*}
\left\|u_{n}(t)-u_{1}(t)\right\|_{H} \leqq\left\|u_{n}(s)-u_{1}(s)\right\|_{H} \tag{2.1}
\end{equation*}
$$

for any $s, t \in[0, T]$ with $s \leqq t$. Now suppose for contradiction that $\left\{u_{n}(T)\right\}$ is not bounded in H. Then we may assume, taking a subsequence if necessary, that $\left\|u_{n}(T)\right\|_{H} \rightarrow \infty$ as $n \rightarrow \infty$. Thus it follows from (2.1) that $\inf _{0 \leqq t \leq T}\left\|u_{n}(t)\right\|_{H} \rightarrow \infty$ as $n \rightarrow \infty$.

We choose a Lipschitz continuous function h from [$0, T$] into X such that $t \rightarrow \psi(t ; h(t))$ is bounded on [0,T]. It is known that under the hypotheses ($\psi .1$) and ($\psi .2$) such a function h does indeed exist (cf. [9, Lemma 3.3]). Let L be an arbitrary number such that $L>C=\operatorname{ess} \sup \left\|f-h^{\prime}\right\|_{X^{*}} . \quad$ Since $\inf _{0 \leqq t \leq T}\left\|u_{n}(t)-h(t)\right\|_{H}$ $\rightarrow \infty$ as $n \rightarrow \infty$, the assumption ($\psi .2)^{\prime}$ implies that

$$
\psi\left(t ; u_{n}(t)\right)-\psi(t ; h(t)) \geqq L\left\|u_{n}(t)-h(t)\right\|_{X} \quad \text { for a.a. } t \in[0, T],
$$

provided that n is sufficiently large.
Therefore, for each pair $s, t \in[0, T]$ with $s \leqq t$,

$$
\begin{aligned}
& \int_{s}^{t}\left(f-h^{\prime}, u_{n}-h\right)_{X} d r \\
& \quad \geqq \int_{s}^{t}\left(u_{n}^{\prime}-h^{\prime}, u_{n}-h\right)_{X} d r+\int_{s}^{t}\left\{\psi\left(r ; u_{n}\right)-\psi(r ; h)\right\} d r \\
& \quad \geqq \int_{s}^{t}\left(u_{n}^{\prime}-h^{\prime}, u_{n}-h\right)_{X} d r+L \int_{s}^{t}\left\|u_{n}-h\right\|_{X} d r \\
& \quad=\frac{1}{2}\left(\left\|u_{n}(t)-h(t)\right\|_{H}^{2}-\left\|u_{n}(s)-h(s)\right\|_{H}^{2}\right)+L \int_{s}^{t}\left\|u_{n}-h\right\|_{X} d r
\end{aligned}
$$

so that for each pair $s, t \in[0, T], s \leqq t$,

$$
\frac{1}{2}\left(\left\|u_{n}(t)-h(t)\right\|_{H}^{2}-\left\|u_{n}(s)-h(s)\right\|_{H}^{2}\right)+(L-C) C_{3}^{-1} \int_{s}^{t}\left\|u_{n}-h\right\|_{H} d r \leqq 0
$$

where C_{3} is a positive constant such that $\|x\|_{H} \leqq C_{3}\|x\|_{X}$ for every $x \in X$. This inequality implies that

$$
\left\|u_{n}(t)-h(t)\right\|_{H}-\left\|u_{n}(s)-h(s)\right\|_{H}+(L-C) C_{3}^{-1}(t-s) \leqq 0
$$

for any $t, s \in[0, T]$ with $s \leqq t$. Therefore, taking $s=0$ and $t=T$, we have

$$
(L-C) C_{3}^{-1} \leqq\left\|u_{n}(0)-h(0)\right\|_{H}-\left\|u_{n}(T)-h(T)\right\|_{H},
$$

which contradicts the hypothesis that $\left\{\left\|u_{n}(0)\right\|_{H}-\left\|u_{n}(T)\right\|_{H}\right\}$ is bounded above. Hence, it must be true that $\left\{u_{n}(T)\right\}$ is bounded in H.

Combining the inequality (2.1) with the fact that $\left\{u_{n}(0)\right\}$ is bounded in H, we readily conclude that $\left\{u_{n}\right\}$ is bounded in $C([0, T] ; H)$. This completes the proof.

One of the main results of this paper is the following existence theorem.
Theorem 1. For a given $f \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with $f^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$, there exists a function $u \in D(\Psi) \cap C([0, T] ; H)$ such that
(i) $u(0)=u(T) ;$
(ii) $u^{\prime} \in L^{2}(0, T ; H)$;
(iii) $\int_{0}^{T}\left(u^{\prime}-f, u-v\right)_{X} d t \leqq \Psi(v)-\Psi(u) \quad$ for every $\quad v \in D(\Psi)$.

Proof. Let x be any element of D_{H}. According to (1) of Proposition 3 there exists a unique function $u \in D(\Psi) \cap C([0, T] ; H)$ with initial value $u_{0}=x$ and satisfying (1.7). Then we put $S x=u(T)$. In this manner we can define a (singlevalued) operator S from the closed convex set D_{H} in H into itself. From Proposition 3 and the assumption ($\psi .3$) it follows that the range of S is contained in D_{0} and that S is contractive on D_{H}, i.e.,

$$
\|S x-S y\|_{H} \leqq\|x-y\|_{H} \quad \text { for all } \quad x, y \in D_{H}
$$

Now we form the sequence of iterates $\left\{S^{n} x\right\}$ for an arbitrary but fixed $x \in D_{0}$. By definition, $S^{n} x$ is the value at $t=T$ of the function $u_{n}(t)$ which satisfies (1.1) with $u_{0}=S^{n-1} x$. Then,

$$
\left\|u_{n}(0)\right\|_{H}-\left\|u_{n}(T)\right\|_{H} \leqq\left\|S^{n-1} x-S^{n} x\right\|_{H} \leqq\|S x-x\|_{H},
$$

which shows that $\left\{\left\|u_{n}(0)\right\|_{H}-\left\|u_{n}(T)\right\|_{H}\right\}$ is bounded above. Since $\left\{S^{n} x\right\}$ is bounded in H by Lemma 1, we can apply a fixed point theorem of Browder and Petryshyn [7] to conclude that S has a fixed point $\tilde{u}: S \tilde{u}=\tilde{u}$. Let u be the function which satisfies (1.1) with $u_{0}=\tilde{u}$. Then it is easy to see that this u is the required solution of our problem. Thus the proof is complete.

Remark 2.1. In case $X=H$ and $p=2$, modifying slightly the proof of Lemma 1, we see that the conclusion of Lemma 1 is valid if $f \in L^{2}(0, T ; H)$. Hence, if $(\psi .1)$ is replaced by $(\psi .1)^{\prime}$, then the conclusion of Theorem 1 holds for $f \in L^{2}(0, T ; H)$ without the condition $f^{\prime} \in L^{2}(0, T ; H)$. See Remark 1.1.

Remark 2.2. If we replace the assumption ($\psi .2)^{\prime}$ by ($\psi .2$), the problem
$P[\psi, f]$ does not necessarily have a strong solution. For example, let $X=H$ $=R^{1}$ (1-dimensional Euclidean space), $p=2$ and $\psi(t ; x)=|x|$ for $x \in R^{1}$. Then the initial value problem

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+\partial \psi(t ; u(t)) \ni 2, \quad t \in(0, \infty) \\
u(0)=x_{0} \in R^{1}
\end{array}\right.
$$

where $\partial \psi(t ; \cdot)$ denotes the subdifferential of $\psi(t ; \cdot)$, has the following solutions:

$$
\begin{aligned}
& u(t)=t+x_{0} \quad \text { if } x_{0} \geqq 0, \\
& u(t)=\left\{\begin{array}{ll}
t+\frac{1}{3} x_{0} & \text { for } t \geqq-\frac{1}{3} x_{0}, \\
3 t+x_{0} & \text { for } 0 \leqq t \leqq-\frac{1}{3} x_{0},
\end{array} \quad \text { if } x_{0}<0 .\right.
\end{aligned}
$$

Clearly, $u(0) \not \equiv u(T)$ for any $x_{0} \in R^{1}$.

3. Properties of the operators $\boldsymbol{M}_{\boldsymbol{p}}$ and $\boldsymbol{S}_{\boldsymbol{P}}$

Let ψ and Ψ be as in the introduction and let D_{H} be as in Section 1.
We denote by \mathscr{F} the duality mapping of X into X^{*} associated with gauge function $\mu(r)=r^{p-1}$. By definition, \mathscr{F} assigns to each $z \in X$ a $z^{*} \in X^{*}$ such that $\left(z^{*}, z\right)_{X}=\|z\|_{X}^{p}$ and $\left\|z^{*}\right\|_{X^{*}}=\|z\|_{X}^{p-1}$. (Such a z^{*} is uniquely determined by z because of the strict convexity of X^{*}.) Then the mapping F from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ defined by $(F u)(t)=\mathscr{F}[u(t)]$ is also the duality mapping of $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ associated with the same gauge function μ.

The purpose of this section is to prove the following theorem.
Theorem 2. Suppose that the following conditions hold:
(a) Ψ is lower semicontinuous, $\Psi \not \equiv \infty$ and $\Psi>-\infty$ on $L^{p}(0, T ; X)$.
(b) There exists a subset \mathscr{D} of $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ with the property: \mathscr{D} is dense in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and for each $g \in \mathscr{D}$ there is $u \in D\left(S_{p}\right)$ such that $g \in u+F u$ $+S_{p}(u)$.
Then we have:
(I) If $u \in D\left(M_{p}\right)$, then $u \in C([0, T] ; H)$ and $u(0)=u(T)$.
(II) $[u, f] \in G\left(M_{p}\right)$ if and only if there is a sequence $\left\{\left[u_{n}, f_{n}\right]\right\} \subset L^{p}(0, T ; X)$ $\times L^{p^{\prime}}\left(0, T ; X^{*}\right)$ such that $\left[u_{n}, f_{n}\right] \in G\left(S_{p}\right)$ for each $n, f_{n} \xrightarrow{w} f$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$, $u_{n} \xrightarrow{s} u$ in $L^{p}(0, T ; X)$ and in H uniformly on $[0, T]$ as $n \rightarrow \infty$.
(III) M_{p} is a maximal monotone operator from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}(0$, $T ; X^{*}$).

Remark 3.1. If X^{*} is uniformly convex, then " $f_{n} \xrightarrow{w} f$ " in (II) can be replaced by " $f_{n} \xrightarrow{s} f$ '.

Corollary. Suppose that the family $\{\psi(t ; \cdot): 0 \leqq t \leqq T\}$ satisfies the assumptions ($\psi .1$) and ($\psi .3$). Then the statements (I), (II) and (III) of Theorem 2 hold. In particular, in case $X=H$ and $p=2$ the assumption ($\psi .1$) can be replaced by ($\psi .1)^{\prime}$.

Proof of Corollary. Under ($\psi .1$) (or ($\psi .1$)) we see that there are positive numbers a_{0} and a_{1} such that

$$
\psi(t ; z)+a_{0}\|z\|_{X}+a_{1} \geqq 0 \quad \text { for every } \quad z \in X .
$$

(Cf. [9, Lemma 3.2].) Using this property and Theorem 1 we can easily verify that (a) and (b) of Theorem 2 are satisfied.

In order to prove Theorem 2 we introduce an operator \tilde{S}_{p} from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ as follows: $[u, f] \in G\left(\tilde{S}_{p}\right)$ if and only if there is a sequence $\left\{\left[u_{n}, f_{n}\right]\right\} \subset G\left(S_{p}\right)$ such that $f_{n} \xrightarrow{w} f$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and $u_{n} \xrightarrow{s} u$ in $L^{p}(0, T ; X)$.

Proceeding as in the proofs of Lemmas 2 and 3 in [10] we can prove the following two lemmas regarding \tilde{S}_{p}.

Lemma 2. Suppose that (a) and (b) of Theorem 2 are satisfied. Then:
(1) If $u \in D\left(\widetilde{S}_{p}\right)$, then $u \in D(\Psi) \cap C([0, T] ; H)$ and $u(0)=u(T)$.
(2) M_{p} is an extension of \tilde{S}_{p}, i.e., $G\left(\widetilde{S}_{p}\right) \subset G\left(M_{p}\right)$.

Lemma 3. If $\left[u_{1}, f_{1}\right] \in G\left(M_{p}\right)$ and $\left[u_{2}, f_{2}\right] \in G\left(\tilde{S}_{p}\right)$, then

$$
\begin{equation*}
\int_{0}^{T}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d t \geqq 0 . \tag{3.1}
\end{equation*}
$$

Corollary. $\quad \tilde{S}_{p}$ is a monotone operator from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}(0, T$; X^{*}).

We now prove the following
Lemma 4. If $u_{i} \in D\left(S_{p}\right)$ and $f_{i} \in u_{i}+F u_{i}+S_{p}\left(u_{i}\right)(i=1,2)$, then for any $t \in[0, T]$

$$
\begin{gather*}
\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2} \leqq \frac{2}{e^{T}-1} \int_{0}^{T} e^{r}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d r \tag{3.2}\\
+2 \int_{0}^{t}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d r
\end{gather*}
$$

Proof. The relation $f_{i} \in u_{i}+F u_{i}+S_{p}\left(u_{i}\right)(i=1,2)$ implies that

$$
\begin{equation*}
\int_{0}^{T}\left(u_{i}^{\prime}+u_{i}+F u_{i}-f_{i}, u_{i}-v\right)_{X} d t \leqq \Psi(v)-\Psi\left(u_{i}\right) \tag{3.3}
\end{equation*}
$$

for every $v \in D(\Psi)$. For any measurable set $E \subset[0, T]$ we set

$$
v_{1}(t)\left(\text { resp. } v_{2}(t)\right)=\left\{\begin{array}{lll}
u_{2}(t)\left(\text { resp. } u_{1}(t)\right) & \text { if } & t \in E, \\
u_{1}(t)\left(\text { resp. } u_{2}(t)\right) & \text { if } t \in[0, T] \backslash E .
\end{array}\right.
$$

Since $v_{i} \in D(\Psi)(i=1,2)$, we have by (3.3)

$$
\int_{E}\left(u_{i}^{\prime}+u_{i}+F u_{i}-f_{i}, u_{i}-u_{j}\right)_{X} d t+\int_{E}\left\{\psi\left(t ; u_{i}\right)-\psi\left(t ; u_{j}\right)\right\} d t \leqq 0
$$

for $i, j=1,2$, which implies that for $i, j=1,2$,

$$
\begin{align*}
& \left(u_{i}^{\prime}(t)+u_{i}(t)+\left(F u_{i}\right)(t)-f_{i}(t), u_{i}(t)-u_{j}(t)\right)_{X} \\
& \quad+\psi\left(t ; u_{i}(t)\right)-\psi\left(t ; u_{j}(t)\right) \leqq 0 \quad \text { for } \quad \text { a.a. } t \in[0, T] \tag{3.4}
\end{align*}
$$

Adding inequalities (3.4) with pairs $(i, j)=(1,2),(2,1)$ and using the monotonicity of F, we obtain

$$
\begin{aligned}
& \left(u_{1}^{\prime}(t)-u_{2}^{\prime}(t), u_{1}(t)-u_{2}(t)\right)_{X}+\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2} \\
& \quad \leqq\left(f_{1}(t)-f_{2}(t), u_{1}(t)-u_{2}(t)\right)_{X} \quad \text { for } \quad \text { a.a. } t \in[0, T] .
\end{aligned}
$$

Multiplying both sides of this inequality by e^{t}, integrating them on [0,T] and noting that $u_{i}(0)=u_{i}(T)(i=1,2)$, we get

$$
\begin{align*}
& \frac{1}{2}\left(e^{T}-1\right)\left\|u_{1}(0)-u_{2}(0)\right\|_{H}^{2} \\
& \quad \leqq-\frac{1}{2} \int_{0}^{T} e^{t}\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2} d t+\int_{0}^{T} e^{t}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d t \tag{3.5}\\
& \quad \leqq \int_{0}^{T} e^{t}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d t
\end{align*}
$$

On the other hand, from (2) of Proposition 1 and the monotonicity of the mapping $v \rightarrow v+F v$ from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ it follows that

$$
\begin{equation*}
\left\|u_{1}(t)-u_{2}(t)\right\|_{H}^{2} \leqq\left\|u_{1}(0)-u_{2}(0)\right\|_{H}^{2}+2 \int_{0}^{t}\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} d r \tag{3.6}
\end{equation*}
$$

for any $t \in[0, T]$. Now the required inequality (3.2) follows from (3.5) and (3.6).
We also need the following lemma. Since the proof is easy, we omit it.
Lemma 5. Let A be a monotone operator from a (real) Banach space V
into its dual V^{*} and let B be a singlevalued strictly monotone operator from V into V^{*}, that is, $(B v-B w, v-w)_{V}>0$ for any $v, w \in D(B)$ with $v \neq w$. If the range of $A+B$ is all of V^{*}, then A is maximal monotone.

Proof of Theorem 2. According to Corollary to Lemma 3, \tilde{S}_{p} is a monotone operator from $L^{p}(0, T ; X)$ into $L^{p^{\prime}}\left(0, T ; X^{*}\right)$. If the maximal monotonicity of \tilde{S}_{p} is shown, then Theorem 2 follows readily from Lemmas 2 and 3. On account of Lemma 5, in order to show that \tilde{S}_{p} is maximal monotone it is enough to prove that $\tilde{S}_{p}+F+I$ is surjective, where I is the identity operator on $L^{p}(0, T ; X)$. Below we shall show that this is indeed the case.

Let f be any element of $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and choose a sequence $\left\{f_{n}\right\} \subset D$ such that $f_{n} \xrightarrow{s} f$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$. In view of the assumption (b) there exists, for each n, a $u_{n} \in D\left(S_{p}\right)$ such that $f_{n} \in u_{n}+F u_{n}+S_{p}\left(u_{n}\right)$, or equivalently, $u_{n}(0)=u_{n}(T)$ and

$$
\begin{equation*}
\int_{0}^{T}\left(u_{n}^{\prime}+u_{n}+F u_{n}, u_{n}-v\right)_{X} d t \leqq \Psi(v)-\Psi\left(u_{n}\right) \tag{3.7}
\end{equation*}
$$

for every $v \in D(\Psi)$. Observe now that by (b) there is at least one function h_{0} $\in D(\Psi) \cap C([0, T] ; H)$ such that $h_{0}(0)=h_{0}(T)$ and $h_{0}^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$. Taking h_{0} in (3.7) as v, we obtain by integration by parts

$$
\int_{0}^{T}\left(h_{0}^{\prime}+u_{n}+F u_{n}-f_{n}, u_{n}-h_{0}\right)_{X} d t \leqq \Psi\left(h_{0}\right)-\Psi\left(u_{n}\right) .
$$

The above inequality yields

$$
\begin{align*}
& \Psi\left(u_{n}\right)+\int_{0}^{T}\left\|u_{n}\right\|_{X}^{p} d t+\int_{0}^{T}\left\|u_{n}\right\|_{H}^{2} d t \\
& \leqq \Psi\left(h_{0}\right)+\int_{0}^{T}\left(\left\|h_{0}^{\prime}\right\|_{X^{*}}+\left\|f_{n}\right\|_{X^{*}}\right)\left(\left\|u_{n}\right\|_{X}+\left\|h_{0}\right\|_{X}\right) d t \tag{3.8}\\
&+\int_{0}^{T}\left\|h_{0}\right\|_{H}\left\|u_{n}\right\|_{H} d t+\int_{0}^{T}\left\|u_{n}\right\|_{X}^{p-1}\left\|h_{0}\right\|_{X} d t .
\end{align*}
$$

In view of the assumption (a) there are $f^{*} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and a number C such that

$$
\Psi(v) \geqq \int_{0}^{T}\left(f^{*}, v\right)_{X} d t+C \quad \text { for all } \quad v \in L^{p}(0, T ; X)
$$

Hence, by (3.8), we see that $\left\{u_{n}\right\}$ is bounded in $L^{p}(0, T ; X)$ and $\left\{\Psi\left(u_{n}\right)\right\}$ is bounded. On the other hand, from Lemma 4 it follows that $\left\{u_{n}\right\}$ converges in H uniformly on $[0, T]$ to a function $u \in C([0, T] ; H)$ with $u(0)=u(T)$. Thus $u \in L^{p}(0, T ; X)$, $u_{n} \xrightarrow{w} u$ in $L^{p}(0, T ; X)$ as $n \rightarrow \infty$, and

$$
-\infty<\Psi(u) \leqq \liminf _{n \rightarrow \infty} \Psi\left(u_{n}\right)<+\infty
$$

because of the lower semicontinuity of Ψ. We may assume, taking a subsequence if necessary, that $F u_{n} \xrightarrow{w} g$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$ as $n \rightarrow \infty$ for some $g \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$.

Since $u \in D(\Psi)$, replacing v by u in (3.7) and using the monotonicity of the mapping $I+F$, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{0}^{T}\left\{\left(u_{n}^{\prime}, u_{n}-u\right)_{X} d t+\Psi\left(u_{n}\right)-\Psi(u)\right\} \leqq 0 \tag{3.9}
\end{equation*}
$$

Moreover, since $u_{n} \xrightarrow{w} u$ in $L^{p}(0, T ; X)$ and $F u_{n} \xrightarrow{w} g$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$, we have

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\limsup } \int_{0}^{T}\left(F u_{n}, u_{n}-u\right)_{X} d t \\
& \quad \leqq \limsup _{n \rightarrow \infty}^{T} \int_{0}^{T}\left(F u_{n}, u_{n}-v\right)_{X} d t+\int_{0}^{T}(g, v-u)_{X} d t \\
& \quad \leqq \int_{0}^{T}\left(v^{\prime}, v-u\right)_{X} d t+\Psi(v)-\Psi(u)+\int_{0}^{T}(f-g-u, u-v)_{X} d t
\end{aligned}
$$

for every $v \in D(\Psi) \cap C([0, T] ; H)$ such that $v(0)=v(T)$ and $v^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$. Take $v=u_{n}$ in the last expression of the above and let n tend to infinity. Then from (3.9) we find

$$
\limsup _{n \rightarrow \infty} \int_{0}^{T}\left(F u_{n}, u_{n}-u\right)_{X} d t \leqq 0
$$

This together with the uniform convexity of $L^{p}(0, T ; X)$ implies that $u_{n} \xrightarrow{s} u$ in $L^{p}(0, T ; X)$ and $F u_{n} \xrightarrow{w} F u$ in $L^{p^{\prime}}\left(0, T ; X^{*}\right)$. Thus $f-u-F u \in \widetilde{S}_{p}(u)$ by the definition of \tilde{S}_{p}. It follows that $\tilde{S}_{p}+F+I$ is surjective. This completes the proof of Theorem 2.

References

[1] H. Attouch, Ph. Bénilan, A. Damlamian and C. Picard, Equations d'évolution avec condition unilatérale, C. R. Acad. Sci. Paris Ser. A-B 279 (1974), A607-A609.
[2] H. Attouch and A. Damlamian, Problèmes d'évolution dan les Hilbert et applications, preprint.
[3] Ph. Bénilan, Solutions periodiques, Séminaire d'Orsay 1970/71.
[4] Ph. Bénilan and H. Brézis, Solutions faible d'équations d'évolution dan les espaces de Hilbert, Ann. Inst. Fourier, Grenoble 22 (1970), 311-329.
[5] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
[6] F. E. Browder, Problèmes non linéaires, Montréal Univ. Press, Montréal, 1966.
[7] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach space, Bull. Amer. Math. Soc. 72 (1966), 571-575.
[8] N. Kenmochi, The semi-discretisation method and nonlinear time-dependent para-
bolic variational inequalities, Proc. Japan Acad. 50 (1974), 714-717.
[9] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math. (to appear).
[10] N. Kenmochi and T. Nagai, Weak solutions for certain nonlinear time-dependent parabolic variational inequalities, Hiroshima Math. J. (to appear).

Department of Mathematics,
 Faculity of Science,
 Hiroshima University

