Hiroshima Mathematical Journal

Boundary continuity of Dirichlet finite harmonic measures on compact bordered Riemannian manifolds

Mitsuru Nakai

Full-text: Open access

Article information

Source
Hiroshima Math. J., Volume 27, Number 1 (1997), 105-139.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206127140

Digital Object Identifier
doi:10.32917/hmj/1206127140

Mathematical Reviews number (MathSciNet)
MR1437928

Zentralblatt MATH identifier
0874.31003

Subjects
Primary: 31C45: Other generalizations (nonlinear potential theory, etc.)
Secondary: 31B25: Boundary behavior 35J65: Nonlinear boundary value problems for linear elliptic equations

Citation

Nakai, Mitsuru. Boundary continuity of Dirichlet finite harmonic measures on compact bordered Riemannian manifolds. Hiroshima Math. J. 27 (1997), no. 1, 105--139. doi:10.32917/hmj/1206127140. https://projecteuclid.org/euclid.hmj/1206127140


Export citation

References

  • [1] E. Gagliardo, Caractterizzazione delle traccie sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Padova, 27 (1957), 284-305.
  • [2] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Claredon Press, Oxford-New York-Tokyo, 1993.
  • [3] M. Heins, On the Lindelf principle, Ann. Math., 61 (1955), 440-473.
  • [4] D. A. Herron and P. Koskela, Continuity of Sobolev functions and Dirichlet finite harmonic measures, Potential Analysis (to appear).
  • [5] L. Holopainen, Nonlinear potential theory and quasiregular mappings on Riemannian manifolds, Ann. Acad. Sci. Fenn., Ser. AI Math. Dissertation, 74 (1990), 1-45.
  • [6] V. G. Maz'ya, On the continuity at the boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad Univ. Math., 3 (1976), 225-242. English translation of Vestnik Leningrad. Univ., 25 (1970), 42-55 (Russian).
  • [7] V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
  • [8] J. Milnor, Topology from the Differentiable Viewpoint, Univ. Press of Va., Varginia, 1965.
  • [9] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
  • [10] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, London, 1973.
  • [11] M. Nakai, Dirichlet finite harmonic measures on Riemann surfaces, Complex Variables, 17 (1991), 123-131.
  • [12] M. Nakai, Riemannian manifolds with connected Royden harmonic boundaries, Duke Math. J., 67 (1992), 587-625.
  • [13] M. Nakai, Existence of Dirichlet finite harmonic measures in nonlinear potential theory, Complex Variables, 21 (1993), 107-114.
  • [14] M. Nakai, Existence of Dirichlet finite harmonic measures on Euclidean balls, Nagoya Math. J., 133 (1994), 85-125.
  • [15] M. Nakai, Existence of Dirichlet infinite harmonic measures on the unit disc, Nagoya Math. J., 138 (1995), 141-167.
  • [16] M. Nakai, Existence of Dirichlet infinite harmonic measures on the Euclidean unit ball, Hiroshima Math. J., 26 (1996), 605-621.
  • [17] B. Rodin and L. Sario, Principal Functions, Van Nostrand, Princeton, 1968.
  • [18] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302.
  • [19] J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.