Boundary continuity of Dirichlet finite harmonic measures on compact bordered Riemannian manifolds

Mitsuru NAKAI

(Received October 30, 1995)

ABSTRACT. Generalizing the notion of p-harmonic measures in the sense of Heins we consider \mathscr{A} -harmonic measures of exponent p on the interior M of a compact bordered Riemannian manifold $\overline{M}=M\cup\partial M$ with smooth border ∂M of class C^∞ for $1< p<\infty$. It is shown that \mathscr{A} -harmonic measures of exponent p with finite p-Dirichlet integrals on M can always be extended to continuous functions on \overline{M} which are constantly zero or one on each connected component of ∂M if and only if $2\leq p<\infty$. In the appendix we consider an entirely arbitrary relatively compact subregion M of any Riemannian manifold of class C^∞ and it is shown that \mathscr{A} -harmonic measures of finite exponent $p>\dim M$ with finite p-Dirichlet integrals on M can always be extended to continuous functions on $\overline{M}=M\cup\partial M$ which are constantly zero or one on each connected component of the relative boundary ∂M of M.

0. Introduction

Take a compact bordered Riemannian manifold $\overline{M} = M \cup \partial M$ of dimension $d \ge 2$ of class C^{∞} with smooth border ∂M of class C^{∞} (cf. § 1.5 below) and fix a real number 1 . Consider the quasilinear elliptic partial differential equation

$$(0.1) -\operatorname{div} \mathscr{A}_{*}(\nabla u) = 0$$

on the interior M of \overline{M} , where $\mathscr{A}_x(h) \cdot h \approx |h|^p$; the precise assumptions on \mathscr{A} are listed in §2.1 below. A typical example of the equation (0.1) is the so called p-Laplace equation

(0.2)
$$-\Delta_{p}u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$$

and thus of course the usual Laplace equation $-\Delta_2 u = -\Delta u = 0$ is included in our consideration.

A continuous weak solution of (0.1) on M is referred to as an \mathcal{A} -harmonic

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B35; Secondary 31C45, 30F25.

Key words and phrases. Dirichlet integral, harmonic measure.

This work was partly supported by Grant-in-Aid for Scientific Research, No. 06640227, Japanese Ministry of Education, Science and Culture.