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ABSTRACT. Generalizing the notion of p-harmonic measures in the sense of Heins

we consider j^-harmonic measures of exponent p on the interior M of a compact

bordered Riemannian manifold M — M U dM with smooth border dM of class C°°

for 1 < p < oo. It is shown that j/-harmonic measures of exponent p with finite

p-Dirichlet integrals on M can always be extended to continuous functions on M

which are constantly zero or one on each connected component of dM if and only

if 2 ̂  p < oo. In the appendix we consider an entirely arbitrary relatively compact

subregion M of any Riemannian manifold of class C°° and it is shown that jtf-

harmonic measures of finite exponent p > dim M with finite p-Dirichlet integrals on

M can always be extended to continuous functions on M = M U dM which are con-

stantly zero or one on each connected component of the relative boundary dM of M.

0. Introduction

Take a compact bordered Riemannian manifold M = M U dM of dimen-
sion d ̂  2 of class C°° with smooth border dM of class C°° (cf. § 1.5 below)
and fix a real number 1 < p < oo. Consider the quasilinear elliptic partial
differential equation

(0.1) -div^(Fw) = 0

on the interior M of M, where stfx(h)'h & \h\p\ the precise assumptions on

j/ are listed in §2.1 below. A typical example of the equation (0.1) is the so
called p-Laplace equation

(0.2) - Δpu = -div(|Fwr2Fw) = 0

and thus of course the usual Laplace equation — A2u = —Au = Q is included
in our consideration.

A continuous weak solution of (0.1) on M is referred to as an j^-harmonic
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function on M (cf. §2.1 below). An ^-harmonic measure w on M is by
definition an j^-harmonic function w on M such that the greatest ^-harmonic
minorant of w and 1 — w on M is zero (cf. §3.1 below). The function w is
said to be p-Dirichlet finite if the so called p-Dirichlet integral

of w is finite, where dV is the Riemannian volume element on M. The
purpose of this paper is to study the boundary behavior of p-Dirichlet finite
j^-harmonic measures on M at the boundary dM of M.

Given an arbitrary function φ on the boundary dM of M such that φ
is identically zero or one on each connected component of dM. It is easy
to see that the Dirichlet solution w of (0.1) on M with boundary values φ
on dM is a p -Dirichlet finite ^-harmonic measure on M. Our main concern
is what happens to the converse of the above statement: can every p -Dirichlet
finite j/-harmonic measure w on M be obtained as a Dirichlet solution w
of (0.1) on M with a certain boundary function φ on dM as described above?
The main purpose of this paper is to show that the above question is settled
in the affirmative for 2 ̂  p < oo but in the negative for 1 < p < 2. Namely,
we will prove the following result.

THE MAIN THEOREM. The following statement is true if and only if the

exponent p lies in 2 ̂  p < oo: every p-Dirichlet finite s#-harmonic measure w

on M with exponent p is continuously extendable to M = M U dM and the

extended function w takes the constant value zero or one on each connected

component of dM.

Thus, concerning Dirichlet finite harmonic measures, the situations differ
drastically between the cases of 1 < p < 2 and 2 ̂  p < oo. Suppose there are
/ connected components (δM)7 of dM (j = I,...,/). When the exponent p
lies in 2 ̂  p < oo, we will thus show that any p-Dirichlet finite ^/-harmonic
measure w with exponent p on M is extendable to a continuous function on
M, which we denote by the same notation w, and the restriction w\(dM)j of
the extended w on M to (dM)j is either identically 0 or 1 (j = 1,...,/). Hence
there are altogether Jf different p-Dirichlet finite ^/-harmonic measures with
exponent p on M. In particular, if dM is connected, i.e. / = 1, then there
are only two different p-Dirichlet fintie j/-harmonic measures with exponent
p on M which are the constant 0 and the constant 1 so that there exist no
nonconstant p-Dirichlet finite j^-harmonic measures on M with exponent p.
As an application we see that there are no nonconstant p-Dirichlet finite
j^-harmonic measures with exponent p on any relatively compact subregion
M of Euclidean space Rd with connected C°° relative boundary dM such as
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ellipsoids or solid torii, and in particular, the open unit ball Bd (see [14] and
also [4]). This result for Bd is a well known classical result in the theory
of functions when p = d = 2 and $4 is the classical Laplace operator.

When the exponent p lies in 1 < p < 2, we will first show, as is trivial
in the case of 2 ̂  p < oo by the above assertion, that the essential range of
the trace (a generalized "boundary values") on dM of any p-Dirichlet finite
j/-harmonic measure w on M with exponent p is contained in the two
elements set {0, 1}. However, as the characteristic feature of the case of
1 < p < 2, we will show the existence of a p-Dirichlet finite j^-harmonic
measure w on M with exponent p such that the actual boundary values of
w are one on B and zero on (dM)\B for any relatively compact smooth
parametric ball B in the border manifold dM given in advance. Hence, if
we take such a B in a component (dM)j of dM so that (dM\\B Φ 0, then
we see that w is discontinuous on (dM), so that w cannot be continuously
extendable to M. Thus we also see that there are infinitely many different
p-Dirichlet finite j^-harmonic measures on M with exponent p in 1 < p < 2.

We assume in this paper that the border dM of M is smooth of class
C°°. Actually, we can easily show by giving some simple counterexample e.g.
in the case d > 2 and p = 2 that the theorem is invalid unless a certain
regularity condition is imposed upon dM. However, by examining the whole
discussion in this paper it can be easily recognized that the regularity of the
border dM of M may be weakened to being smooth of class C2. Nevertheless,
for the sake of simplicity, we still assume that dM is smooth of class C°°
throughout this paper. On the other hand we must remark that the theorem
reduces to a triviality without assuming any regularity condition on dM when
the exponent p lies in d = dim M < p < oo. Namely we take an arbitrary
relatively compact subregion M of any Riemannian manifold of class C°°.
Hence in particular the relative boundary dM of M may or may not consist
of infinitely many connected components. Under this very general setting we
will prove in Appendix at the end of the paper that j^-harmonic measures
of finite exponent p > dim M with finite p-Dirichlet integrals on M can always
be extended to continuous functions on M = M U dM which are constantly
zero or one on each connected component of dM (Theorem A).

The paper consists of 7 sections and an appendix. Each sections are
divided into several subsections. In §1 titled Sobolev spaces on Riemannian
manifolds some properties of point norms of differential forms are considered
and also traces for Sobolev functions are explained. The boundary behavior
of p-Dirichlet finite j/-harmonic functions with given traces on the boundary
are discussed in §2 with the title Dirichlet problem for jtf-harmonic functions.
A characterization of ^/-harmonic measures is given in §3 under the title
^-harmonic measures. The title of §4 is A property of 2-Dirichlet finite 2-
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harmonic measures. Here the orthogonality of differentials of any 2-Dirichlet
finite 2-harmonic measures on M to the conjugate differentials of (d — 2)-forms
on neighborhoods of M in L2 inner products is given. In §5 titled A net
of auxiliary forms some technical lemma which is of fundamental importance
in this paper is established. When 1 < p < 2, we show in § 6 with the title
A boundary characteristic function that the characteristic function on dM of
any smooth small parametric ball in dM is the trace of a Sobolev function
on M. In the last § 7 titled Proof of the main theorem, we divide the assertion
of the main theorem into two parts: Theorem 7.1 is the assertion of the main
theorem for 2 ̂  p < oo and Theorem 7.2 is that for 1 < p < 2. These are
proved separately in this last section. At the end of the paper there is
Appendix titled The case of p > d on a general M in which Theorem A
mentioned above is proved.

1. Sobolev spaces on Riemannian manifolds

1.1. Throughout this paper we fix a Riemannian manifold N of class
C°° of dimension d ^ 2, connected and orientable. For each ξ € N we denote
by B(ξ, R) (0 < R < oo) a relatively compact parametric ball at ξ with a local
parameter x = (x1,..., xd) valid on a neighborhood of the closure B(ξ, R) of
B(ξ, R) such that x(ξ) = 0 and B(ξ, R) = {\x\ < R}. Once B(ξ, R) is fixed, we
denote by B(ξ, r) (0 < r ^ R) the concentric ball {|x| < r}. We often use the
same letter x to denote the generic point of N and also its local parameter.

Let (0y) be the metric tensor on N9 (gij) = (g^Γ1 and g = det(00 ). We
denote by dV the volume element on N so that

dV(x) = ^fg(x)dxl Λ ••• Λ dxd

in terms of a local parameter x = (x1,..., xd). We also have dV = *1 where
* is the Hodge star operator. In each parametric ball B(ξ, R) with a local
parameter x = (x1,..., xd\ the Riemannian measure dV(x) and the Euclidean
(Lebesgue) measure given by dx = dx1 ...dxd are mutually absolutely continu-
ous and the Radon-Nikodym densities dV(x)/dx and dx/dV(x) are essentially
bounded. Hence a.e. dV and a.e. dx are identical and we can loosely use
a.e. without referring to dV or dx.

For each fixed x € N, the tangent space to TV at x will be denoted by
TXN, and the tangent bundle, that is, the union of all tangent spaces to N9

will be denoted by TN. We denote by h - k the inner product of two tangent
vectors h and k in TXN and by \h\ the length of h e TXN so that, if (hl9...9hd)
and (&!,..., fcd) are covariant components of h and fe, then

h k = gijhtk and
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Here and hereafter, we use the Einstein convention: whenever an index i

appears both in the upper and lower positions, it is understood that summa-

tion for i = 1, . . . , d is carried out.

Let G be an open subset of N. With a co variant tensor aiίttΛa appearing

in an s-form

<*= Σ ^...i/*'1 Λ '" Λ dχis

«!<•••<!.

on G we associate the contra variant tensor α l l-/ s given by

αiί' is = gίlkl...gisksαkί^ks

on G. We consider the inner product α β of two s-forms α and

β= Σ V^'A-Ad*'-
ii <-<»,

on G and the norm (point norm) |α| defined by

α /?= Σ «ίl-^,.,
ίi <•••<«.

and

, _

= 7^= Σ ^-X...

so that oc'β and |α| are functions on G. Hence we have

α Λ *β = <*'

1.2. Let G be an open subset of N. In this paper we use the notation

LP(G) (1 ̂  p ̂  oo) in three ways. The first is the standard use: LP(G) is the
Banach space of measurable functions / on G with finite norms ||/; Lp(G)|| <

oo given by

U \1/P
\f\*dV] ( l ^ p < o o )

1 /

and H/ L^G)!! is the essential supermum of |/| on G. The second use: for

a vector field X on G we write X e LP(G) if |Jf |eLp(G) in the first sense

and we set

As the third use we write α e Lp(G) for a differential form α on G if |α| e Lp(G)

in the first sense and we set



110 Mitsuru NAKAI

In any of these three senses the dual space

Lp(G)* = L€(G) (1/p + !/<? = 1, 1 ̂  p < oo).

For example, if Lp(G) is considered as the Banach space of pth integrable
measurable differential s-forms on G, then, for any β* e LP(G)*, there is a
unique s-form β e Lq(G) such that

j8*(α)= Λ βdV («eL,(G)).

The following elementary relation will be frequently made use of: let α
be a d-ίorm belonging to L^G); then we have

I Γ Γ
(1.1) α £ \u\dV.

In fact, let α = clmmtddxl Λ ••• Λ dxd. Since

C " = I

where δ ;̂;;̂  is the generalized Kronecker delta, that is, it is 1 ( — 1, resp.) if
(ίl . . . id) is an even (odd, resp.) permutation of (1 . . . d) and 0 if some two of

il9 ..., id are identical, we see that |α| = (c1'"^^ ...d)
1/2 = kι...d!0~1/2 Therefore

we deduce

ί « = ί .̂.̂ W ^ f |c1...d|^
1/2d7= ί

JG JG JG J

1.3* We are still assuming that G is an open subset of N. The following
relation is useful in our later calculations.

LEMMA 1.1 (Wedge inequality). // α is an s-form and β is a t-form on
G, then the following inequality is valid on G:

(1.2)

PROOF. If s + t > d, then α Λ β = 0 and = 0 so that (1.2) is trivially
y +1)

valid. We can thus assume s + t ^ a. If either s = 0 or t = 0, then |α Λ β\ =

|α/?| = |α| \β\ and ( ~ 1^1. Again (1.2) is trivially valid in this case. Hence
V s + v

we may assume that s > 0, t > 0 and s + t ^ d to prove (1.2). Take an
arbitrary point ξ e G. We only have to show that (1.2) is valid at ξ. Choose
a local parameter x = (x1,..., xd) at ξ such that the corresponding components
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of the metric tensor g^(x) satisfies 0fj (0) = δ^ (x(ξ) = 0). Let

α = £ aiι...isdxl* Λ ••• Λ dxis

iι< <ίs

and

β = Σ ^jι ..itdxjί Λ ••• Λ dxjt

Jι<-<Λ

in this coordinate. Then we have

N 2 = Σ K...J2 and \β\2= £ (bΛ...Λ)2

ίl <-<«. Jί<"'<Jt

at ξ. Observe that

α Λ £ = fc < Σ f c c .̂..̂ ^*1 Λ ••• Λ έίx* +

with cfcι fcs+t being given by

where the sum £' is taken with respect to iί <••- < is and j1 < ••• <7f such

that

&,..., zs} U {7\,..., jt} = {fc 1 ? . . . , fes+ί}

and δ^ is the generalized Kronecker delta. By the Schwarz inequality

(ckl...k,J
2 ^ (Σ \^...ίs\\bh...jt\-}2 < (Σ' K.-.i.

at ξ and thus

at ξ. Since £ e G is arbitrary, we have obtained (1.2) on G. D

1.4. Let G be an open subset of N. The Sobolev space Wp

l(G) (1 < p < oo)

is the family of functions /eLp(G) whose distributional gradient F/eLp(G),

where P/ is determined by the relation

I Vf-ΨdV=- \ fdivΨdV
JG JG

for every C°° vector field Ψ on G with compact support in G. The Sobolev

space Wp(G) forms a Banach space equipped with the norm
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The Sobolev null space Wp\0(G) is the closure of Q°(G) in Wp(G) with respect
to the above norm. The spaces WP(G) and Wpt0(G) are vector lattices with
respect to the lattice operations U and Π defined by

(/U h)(ζ) = max(/(ί), h(ξ)) and (/Π h)(ξ) =

for every ξ e G, for every pair of functions / and to on G.

1.5. A hypersurface S in N is said to be smooth if, for every ξ e S, there
exists a parametric ball £(£, 1) with a local parameter x in N and a function
Φ(x) of class C1 of x such that SΠB(£, 1) = {\x\ < 1, Φ(x) = 0} and VΦ Φ 0
on SΠ £(<!;, 1). We say that S is of class C°° if the above Φ is of class C°°.
In this case we can choose a parametric ball B(ξ, 1) with the local parameter
x = (x1, ...,xd) such that

i.e. x(SΓ\B(ξ, 1)) is a part of the hyperplane xd = 0 in the unit ball of the
Euclidean space Rd of dimension d.

Hereafter we fix a relatively compact subregion M of our fixed Riemannian

manifold N such that N\M = N\M and the relative boundary dM of M
consists of a finite number of mutually disjoint smooth closed hypersurfaces
of class C°°. We may call M = M U dM to be a compact bordered Riemannian
manifold of class C°° with C°° border dM. Actually any abstract compact
bordered Riemannian manifold M = M(JdM of class C°° with C°° border dM
can always be represented as a relatively compact subregion of a certain

Riemannian manifold N of class C°° such that ΛΓ\M = JV\M and the relative
boundary dM consists of a finite number of mutually disjoint smooth closed
hypersurfaces of class C00.

The Riemannian metric on N induces a Riemannian surface element dS
on dM. If we choose a parametric ball B(ξ, 1) at any point ξ in dM with
(dM)Γ(B(ξ, 1) = (|x| < 1, xd = 0}, then dS and dx1 ...dxd~^ are mutually abso-
lutely continuous on (dM) Π B(ξ, 1). Unless otherwise is clearly stated, we
understand that

Lp(dM) = Lp(dM, dS) (l^p^ao)

is the usual function space with respect to dS.

1.6. Take a compact bordered Riemannian manifold M = M U dM of
class C°° with C°° border dM realized as a relatively compact subregion of
N as described in 1.5. Consider the trace y on dM (c.f. e.g. [9]). For each
1 < p < oo, the trace y is the unique bounded linear operator from
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to Lp(dM) such that

(1.3) y/ = /|3Af (/€ ^(M)ΠC(M)).

If we denote by nξ the inner normal to dM at ξ e δM, then we have

(1-4) (yf)(ξ)= lim /(x)
xen{,x-»£

for a.e. ξ in dM (cf. e.g. [10]). As a consequence of (1.4) we can conclude that

7(/U Λ) = (7/) U (7/0 and y(/Π ft) = (y/) Π (yfc)

for all / and h in W^(M). In other words, γ preserves the lattice operations.
Another consequence of (1.4) is that γ preserves the multiplication: if, /, h
and fh belong to WP

L(M)9 then

y(fh) = (yf)(yh).

Concerning the kernel Ker y = y~1(0) of 7 and the image Im 7 = γ(Wp(M))
of 7 considered on Wp(M) we have the following fundamental results. First,
Ker 7 characterizes the Sobolev null space (cf. (e.g. [10]):

(1-5) WP\Q(M) = Ker 7 = {/e Wp

l(M): yf = 0}.

Second, we set

It is seen that the space Ap(dM) forms a Banach space under the norm

/ / * / * i / £\ / \ ι n \ l / n

|| φ; Λp(dM)\\ = \\φ; Lp(dM)\\ + (J J ^ ~^+i2 dS(ί)dS(ιj)J ,

where dis(ξ, η) is the Riemannian distance in N between two points ξ and
η and dS is the Riemannian surface element on dM. The theorem of Gagliardo
([!]) assures the existence of a constant C ^ 1 such that

(1.6) C"1 ||φ; Λp(δΛf)|| ^ inf ||/; ^(M)|| ^ C||φ; y

for every φ in Λp(3M).

2. Dirichlet problems for ^/-harmonic functions

2.1. We say that si is a strictly monotone elliptic operator M, a rela-
tively compact subregion of N with smooth C°° boundary δM as described
in 1.5, with exponent l < p < o o i f ^ i s a mapping of the tangent bundle
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TM to TM satisfying the following assumptions for some constants 0 < α
β< oo:

the mapping s/x = sf\TxM: TxM-> TXM is continuous for
(2.1) almost every xeM, and the mapping x i— > jtfx(X) is

measurable for all measurable vector field X on M

for almost every x E M and for all h e TXM,

(2.2) Λ?x(h)'h^a\h\p,

(2.3) \s/x(h)\ ^

(2.4) (^X(h1)-^x(h2

whenever h{ / h2, and

(2.5)

for all λ 6 R\{0}, where R is the real number field.
The class of all operators si on M satisfying (2.1)-(2.5) with the exponent

1 < p ^ d will be denoted by «a/p(M). Using an si e £#P(M) we consider a
quasilinear elliptic partial differential equation

(2.6) -divj/ΛFu) = 0

on M. A function u on an open subset G of M is a weak solution of (2.6)
if uelocW*(G) and

(2.7) ί.
for every φeC§)(G). If tιeW^(G), then it is easy to see by the Holder
inequality and <tfx(Fu) e Lq(G) (l/p + i/q = 1) as a consequence of (2.3) that
M is a weak solution of (2.6) if and only if (2.7) is valid for every φ e Wpt0(G).
As is well known, weak solutions of (2.6) (possibly modified on sets of zero
measure dV) are actually continuous and in fact Holder continuous (cf. e.g.
[18], [19]).

We say that a function u on an open subset G of M is <$/ -harmonic on
G if uEC(G)ΓilocWp

1(G) and M is a weak solution of (2.6) on G. We will
denote by H^(G) the class of all ^/-harmonic functions on G. The simplest
and the most typical operator stf in <$tfp(M) is the p-Laplacίan

s/χ(h) = \h\p~2h

so that the corresponding elliptic partial differential equation is the p-Laplace
equation
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- Δpu = -div(|PM|p-2Pu) = 0

whose continuous weak solutions on G are in particular referred to as being p-
harmonic on G. We denote by Hp(G) the class of all p -harmonic functions on
G. Observe that 2-harmonic functions are usual classical harmonic functions.

Fundamental properties of ^/-harmonic functions on Riemannian mani-
folds are concisely compiled in e.g. [5] (cf. also [2]) and, in particular, the
way how these properties originally obtained on open subsets in Euclidean
space can be carried over Riemannian manifolds is explained. Among these
properties we especially state the Harnack inequality: If K is a compact subset
in a region D in M, then there is a constant c = c(d, p, α, β, D, K) ^ 1 such that

sup u ̂  c inf u
K K

for every nonnegative j/-harmonic function u in D.

2.2. The existence of Sobolev Dirichlet solutions due to Maz'ya is of
fundamental importance in our study. Let G be an open subset of M . Note
that G is relatively compact in N and G and dG are considered in N. For
any feW*(G) and any s/ e s/p(G) there exists a unique ue H^(G)Γ\WP

1(G)
such that u -/e Wp\0(G) (cf. [6]). Since the function u e H^(G)ΓiWp

ί(G) with
u—feWp]0(G) is determined uniquely by feWp(G), we denote u by π^/,
which will be referred to as the jtf -harmonic part of /e ^(G). We have
thus obtained the direct sum decomposition (the Maz'ya decomposition) of

(2.8) W^G) = (fUG) Π WP\G)) Θ W£0(G).

In the special case of the p-Laplace operator jtfx(h)= \h\p~2h we denote by
πpf the p-harmonic part of /e Wp(G) in place of πj/.

A boundary point ξ e dG is said to be (Sobolev) ^-regular if

(2.9) lim π ° f ( x ) = f ( ξ )
xeG,x^ξ

for every /e C(G)Π WP(G). In this paper we only use the following sufficient
condition: if there is a parametric ball B(ξ, 1) about ξ e dG such that B(ξ, 1) Π
dG is a smooth hypersurface of class C°°, then ξ is ^/-regular.

Let G be an open subset of M and {Gk}^=1 be an exhaustion of G, that
is, Gk is a finite union of mutually disjoint relatively compact subregions in
G such that M\Gk = M\Gk and dGk consists of a finite number of mutually
disjoint smooth closed hypersurfaces of class C°° (fe = 1, 2, ...) and G = (j£Lι Gk.
For any fε W^(G\ set
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on G so that u eH^(G)Γ\ Wp

l(G) and also set

π^kf on Gk,

/ on G\Gfc.

Since φ e H^0(Gk) belongs to W^Q(G) by putting φ = 0 on G\Gfc (cf. e.g. [15]),
we see that f—uke Wpj0(G) and ukε WP(G). We have the following consis-

tency relations (cf. [6]): Vuk-+Vu (/c-> oo) weakly in Lp(G); <tfx(Fuk) -> $tx(Vu)
(k -* oo) weakly in Lq(G) (1/p + l/q = 1). We also have the following consis-

tency relation (cf. [15]): uk^u (fc->oo) strongly in Lp(G).
The most important property of the operator πj of WP(G) to H^(G)Γ\

Wp(G) is its monotoneity in two fashions (cf. [15]): if /t and /2 belong to
Wp

l(G) and Λ ^/2 a.e. on G, then π£/ι ^ π£/2 on G; if feW^G) and
ft e ff ^(G) such that / ^ ft (/ ̂  ft, resp.) a.e. on G, then π£/ g ft (πj/ ̂  ft,
resp.) on G.

2.3. Besides the Dirichlet problem of Sobolev data, we consider the
problem of finding an ^/-harmonic function with a given trace. Given an
arbitrary φ in Λp(dM). Take any / in Wp(M) such that γf = φ. Let u = π^/.

Since u -/e W£0(M)» y(tι -/) = 0 by (1.5) and therefore yu = yf= φ. Thus
we have found a w e /f^(G)Π WP(G) with yu = φ on δM for any given φ e
Λp(dM). Next we claim that such a M is unique. For the purpose take any

υ e H^(M)Γ\ Wp(M) such that yv = φ. Observe that w = u — v e Wpt0(M) since

•yvv = yw — yv = φ — φ = 0 on dM (cf. (1.5)). Then we have the Maz'ya de-
composition of u in two ways: w = w + 0 (u e H^(M)Γi Wp(M\ Oet^0(M))
and u = v + w(f e H^(M)Π W^(M), w e Wp^(M}). Since the decomposition is
unique, we must have u = i; on M.

Since u e H^(M)Γ\ Wp(M) with yu = φ is uniquely determined by φ e
we denote u by τ^φ. Then τ^ gives rise to an operator

which is clearly bijective and in fact τ^ = (y\H^(M)Γ\Wp(M))~l. Moreover
we have the following result (cf. [16]).

PROPOSITION 2.1. The operator τ*£ is monotone, i.e. if φ1 ^ φ2 a.e. on

dM for any φ^ and φ2 in Λp(dM\ then τ^φ1 ^ τ^φ2 everywhere on M.

PROOF. Choose an arbitrary ht in Wp(M) with yhi = φi (i = 1,2). By
the lattice property of W£(M\ (ftx - ft2)UO belongs to WP(M\ Since γ pre-
serves the lattice operations, we see that

y((h, - ft2) U 0) = (γ(h, - ft2)) U 0 = (Φl - φ2) U 0 = Φl - φ2

on dM. If we set /2 = ft2 and /i = ft2 + (fti — ft2) U 0, then y/2 = yft2 = φ2 and
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7/ι = yh2 + y((hι — h2)\JO) = φ2 + (φl — φ2) = φ^.

Then τI^φ1 = π%fl9 τ%φ2 = n^f2 and /x ^/2 on M imply that τI^φ1 ^ τ%φ2,
on M by the monotoneity of

2.4. In addition to the defining boundary behavior γ(τ%φ) = φ of
we have the following more precise boundary behavior of τ^φ if an additional
condition is imposed upon φ (cf. [16]). We say that a φeL^BM) has an
essential limit α e R at ξ e δM if

r|0

where β(ξ, R) is a parametric ball about ξ e δM in JV.

PROPOSITION 2.2. // φ e Lao(dM)Γ\Λp(dM) has an essential limit α at
ξ e dM, then τ%φ has the boundary value α at ξ, i.e.

(2.10) lim τ%φ(y) = α.
yeM,y-+ξ

PROOF. Since τ^(φ — α) = τ%φ — α, we may suppose that φ has the
essential limit 0 at ξedM and we only have to show (2.10) with α replaced

by 0. Let |φ| g K a.e. on dM for a positive constant K. Fix a parametric
ball B(ξ, 1) in ΛΓ at ξ with a local parameter x with x(ξ) = 0 and consider

a function p on N defined by p(x) = \x\ in B(ξ, 1) and p = 1 on N\B(ξ, 1).
Clearly p belongs to the class C(M)Γ\W*(M) and τ^(p|δM) = π^p, or more
roughly, τ%p = π%p. Since any point in dM is ^/-regular,

lim τ%p(x) = lim π^p(x) = p(ξ) = 0.

For any ε > 0 there is a 0 < <5 < 1 such that \φ(η)\ < ε for a.e. η in B(ξ, δ) Π δM .

Since (K/δ)p ^ K in (δAf)\fl(ξ, <5), we see that

K K

a.e. on dM. By the monotoneity of τ^, we have

-yτSpOO - β ^ τ>(>;) ̂  ̂  τ%p(y) + ε (ye M).
d o

On letting y in M tend to ξ, we see by τ^p(>>)-> 0 that

— ε g lim inf τ%φ(y) ^ lim sup τ%φ(y) ^ ε.
yeM,y-*ξ yeM,y->ξ

Since ε > 0 is arbitrary, we finally conclude the required identity (2.10) with
α replaced by 0.
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3. j^-harmonic measures

3.1. Take an si e s#p(M) (1 < p < oo), where M is as described in 1.5.

We denote by

the greatest ^/-harmonic minorant of two j^-harmonic functions u and v on

M. Thus u Λ v is characterized as the j^-harmonic function w on M with
the following two properties. First, w ̂  u and w ̂  v on M. Second, if h is

any ^/-harmonic function on M such that h ̂  u and h ̂  t; on M, then h ̂  w.

Needless to say, the greatest ^/-harmonic minorant of u and v on M may

or may not exist and once we use the notation u Λ v, we understand that

the existence of the greatest ^-harmonic minorant of u and v on M is

assured. We also use the notation u v v to indicate —(( — u) Λ ( — υ))9 the

least ^-harmonic majorant of u and v on M.

We say that w is an ^-harmonic measure on M if w is j^-harmonic on

M and satisfies the condition

(3.1) w Λ (1 - w) = 0

on M. Observe that 1 — w is an ^-harmonic measure on M along with w

since we have (1 — w) Λ (1 — (1 — w)) = (1 — w) Λ w = w Λ (1 — w) = 0 on M.

The constant functions 0 and 1 are clearly j^-harmonic measures on M and

actually these are only constant harmonic measures on M and any non-

constant j^-harmonic measure w on M satisfies 0 < w < 1 on M. In fact,
from (3.1) it follows that 0 ^ w ̂  1 on M and hence both of w and 1 — w

are nonnegative j^-harmonic functions on M. If w = c, a constant, on M,
then we see that

0 = w Λ (1 - w) = c Π (1 - c)

on M, which shows that c = 0 or c = 1. By the Harnack inequality we see

that w > 0 and 1 — w > 0 on M unless w is a constant on M.
The formulation (3.1) of harmonic measures was first introduced by Heins

[3] for 2-harmonic functions on Riemann surfaces (cf. also [4], [11], [12],

[13], [14], [15], [16], etc.).

3.2. Concerning the ranges w(M) = {w(x): x £ M} of j^-harmonic mea-

sures w on M we have the following result. If w is a nonconstant j/-harmonic

measure on M with s/ e <$tfp(M) (1 < p < oo), then the range w(M) of w is

the open interval (0, 1):

w(M) = (0, 1) = μ e R: 0 < >l < 1}.
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In fact, since w(M) is a connected subset of (0, 1), we only have to show that
infM w = 0 and supM w = 1. Set a = supM w so that w ̂  a on M and 0 < a
^ 1. Clearly 1 - w ^ l - α on M. Since 0 ̂  1 - a < 1 and 0 < w < 1 on

M, we have

w ^ (1 — α)w and 1 — a ̂  (1 — α)w

on M. Hence we see that

0 = w Λ (1 - w) ^ w Λ (1 - a) ̂  {(1 - α)w} Λ {(1 - α)w} = (1 - α)w ^ 0

on M and a fortiori (1 — α)w = 0 on M, which implies that a = 1 so that
supM w = 1. Considering 1 — w instead of w in the above argument we see
that supM(l — w) = 1 or infM w = 0.

3.3. To describe the boundary behavior of general j^-harmonic measures
on dM is a difficult problem but we can do it easily when w is moreover
supposed to be of p-Dirichlet finite and the boundary behavior is considered
in the sense of trace.

PROPOSITION 3.1. A function w e H^(M)Γ\ Wf(M) is an jtf -harmonic mea-
sure on M if and only if the essential range of yw is contained in {0, 1}.

PROOF. Suppose first that w e H^(M)Γ\ W*(M) is an j^-harmonic mea-
sure on M. Since w(l — w) e Wp(M\ we can consider u = π^(w(l — w)) on
M. By the monotoneity of π%9 we see that 0 ̂  u ̂  w and 0 ̂  u ̂  1 - w
on M since 0 ̂  w(l - w) ^ w and 0 ̂  w(l - w) g 1 - w on M. Hence we

deduce that

on M so that π^(w(l — w)) = 0 on M. Since w(l — w) = w(l — w) —

π£(w(l - w)) belongs to WP\0(M) = y'^O) (cf. (1.5)), we have

0 = 7(w(l - w)) = (yw)(y(l - w)) = (yw)(l - yw)

dS-a.e., which proves that yw = 0 or 1 — yw = 0 on dM dS-a.e. so that
ywe{0, 1} dS-a.Q.

Conversely suppose that w e H^(M)Γ\ Wp(M) satisfies yw e (0, 1} dS-a.e.
Then y(w(l - w)) = (yw)(l - yw) = 0 dS-a.e. on dM so that w(l - w) e Wp\0(M)
or π^(w(l — w)) = 0. For any h e H^(M) with h ̂  w and h ̂  1 — w on M,

we deduce

h(l — w) ̂  w(l — w) and w/i ^ w(l — w)

on M. Adding these two inequalities we obtain h ̂  2w(l — w) on M. Hence,
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by the monotoneity of π^, we see that

h ^ 2π£(w(l - w)) = 0

on M. This proves that W Λ ( ! — w) = O o n M and that w is an j^-harmonic

measure on M. Π

COROLLARY 3.1. The ^-harmonic part π%f of any /e Wp(M) is an si-

harmonic measure on M if and only if y f e {0, 1} on dM dS-a.e.

PROOF. Since γf-γ(π%f) = γ(f-π%f) = Q on dM dS-a.e., y/e {0, 1}
ί/5-a.e. is equivalent to y(π%f) 6 {0, 1} on dM dS-a.e., which means, by Propo-

sition 3.1, that π%f is an j^-harmonic measure. Π

4. A property of 2-Dirichlet finite 2-harmonic measures

4.1. In this section 4 we only consider 2-harmonic measures (i.e. classical

harmonic measures) on a relatively compact subregion M of N with smooth

relative boundary dM of class C°° as described in 1.5. We say that a differen-

tial form α on an open subset G of N is smooth if α is of class C1 on G.

The following will play a fundamental role in the proof of our main theorem
in this paper.

LEMMA 4.1. Any 2-Dirichlet finite 2-harmonίc measure w on M has the

following orthogonality relation:

(4.1) L<
is valid for any smooth (d — 2)-form α defined on an open neighborhood UΛ of

M in N.

PROOF. We may suppose that w is not constant so that the range

w(M) = (0, 1), the open unit interval on the real line (cf. (3.2)). For two

noncritical values λ and μ of w with 0 < λ < μ < 1 we set

By the Sard theorem (cf. e.g. [8]) that the set of critical values of w is of

1 -dimensional Lebesgue measure zero, there exists a decreasing sequence {λk}

convergent to zero of noncritical values λk of w and an increasing sequence

{μk} convergent to 1 of noncritical values μk of w with λv < μ±. In view of

M= 0 W(λk9μk),
k=l
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we see that

dw Λ dα = lim dw Λ da = (— lY'1 lim dα Λ dw.
JM *T°o JW(λk,μk) *ίoo JW(λk,μk)

Therefore, in order to establish (4.1), we only have to show that

(4.2) dα Λ dw = 0 (W = W(λ, μ))
Jw

for arbitrarily fixed noncritical values λ and μ of w with 0 < λ < μ < 1. Here
W is an open subset of M with smooth relative boundary dMW relative to
M each of whose components may or may not be compact in M.

We introduce a function φ = ((w(l - w))Πc)/c on M where c = λ(\ — μ).
Since w(l — w) > c on W, we see that φ = 1 on W(JdMW. By Proposition
3.1, yw € {0, 1} dS-a.e. and hence y(w(l - w)) = 0 or w(l - w) € W£0(M) by
(1.5). Since W2t0(M) is a vector lattice, φeW2*0(M). Thus there exists a
sequence {φk} in Q°(M) converging to φ in W^CM).

We also fix an exhaustion {Mk} of M with supp φfc c: Mk, that is, Mk is

a relatively compact subregion of M, M \Mk = M\Mk, dMk is smooth, Mk c=
Mk+1 c Mk+1 c: M (fc = 1, 2, . . .), and M = (j£°=1 Mk. For simplicity we set
ψk = φ — φk on M. Then

\\dψk; L2(M)\\ = \\ψk; L2(M)\\

= IIΦ-^;^21

We first evaluate the integral

d(ψka) Λ dw = d\l/k Λ α Λ dw + ψkda Λ dw.
JϊF JϊΓ JW

By the wedge inequality (1.2) we see that

\dψk Λ α Λ dw| = \d\l/k Λ (α Λ dw)| ^ |d^fc||dα Λ dw| ^ d|d

where d = ( , } . Hence by (1.1) and the Schwarz inequality we have
\d- IJ

dψk Λ α Λ dw

Γ Γ= d\ |d^k | |α||dw| dV ̂  d||α; L^M)!! |d^k | |dw|dK
Jw Jw

ί <*||α; LX(M}\\ \\dψk; L2(M)|| \\dw; L2(M)||

^ ί/||α; L^ίM)!! ||Fw; L2(M)|| \\φ - φk; W£(M)\\ -» 0 (ίct oo).
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Here we have used the fact that ||α; L^M)!! < oo which is a consequence of
the smoothness of α and hence of the function |α| on M. Similarly we have

ί < M * Λ d w ^d{ \ψk\\dx\\dw\dV^d\\dxιL^M)\\ ί
Jw Jw Jw

^ d||dα; LW(M)|| ||ιfe L2(M)|| ||dw; L2(M)||

^ d||dα; LJM)!! II Fw; L2(M)|| ||φ - φfc; »^(Af)|| ->0 (kf oo)

since ||dα; L^M)!! < oo as a consequence of the smoothness of α on M. Hence
we can conclude that

im d(ψka
ΐoo JW

(4.3) lim d(ψk(x) Λ dw = 0.
fcΐoo JW

We next compute §wd(φka) Λ dw for each k = 1, 2, .... Since
d((φk(y) Λ dw) = d(φkα) Λ dw, we have

ί d(φka) Λ dw = d((φka) Λ dw).
tr Jίr

The following use of the Stokes formula is justified by the fact that the
support of φk is contained in Mk\

d((φka) A Jw) = d((φk(x) Λ dw) =
J W J WΓ\Mk J

= (%α) Λ dw +
J(dMW)Γ\Mk j

d(WΓ\M k)

(φfc^) Λ dw.
k

Since w takes the constant value λ or μ on each component of 8MW9 we see
that dw = 0 along dM W and therefore the first term of the rightmost side of

the above identity vanishes. The second term of the rightmost side of the
above identity is clearly zero by the fact that (φfcα) Λ dw = 0 on WΓ\dMk

since the support of φk is contained in Mk. Thus we have shown that

(4.4) ί
Jw

Recall that φ = 1 on W so that α = φα on W. Thus, by using (4.4)
above, we proceed as follows:

dα Λ dw = d(φα) Λ dw = d(φα) Λ dw — d(φfcα) Λ dw
Jw Jw Jw Jw

= d((φ — φk)α) Λ dw = d(^kα) Λ dw -> 0 (k | oo).
JTT JΪP
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Here the last relation follows from (4.3). Hence we have shown the validity

of (4.2). Π

4.2. The above lemma 4.1 can be used to describe the boundary behavior

of w in terms of the trace yw of w on dM. Namely, we have the following

result.

LEMMA 4.2. Let w be any 2-Dirichlet finite 2-harmonίc measure on M.

Then the surface integral

J dM

(4.5) (yw)ώc = 0
J dM

for any smooth (d — 2)-form α defined on an open neighborhood UΛ of M in N.

PROOF. Since M is compact in N with N\M = N\M and dM is smooth

of class C00, we can show that C°°(M) = {/|M:/e C°°(N)} is dense in Wj(M)

by exactly the same fashion as in the case of N = Rd (cf. e.g. [7], [10], etc.).

Hence we can find a sequence {wk} in C°°(M) such that

lim || w — wk; W2(M)\\ = 0.
fc->oo

Recall that the function space L2(dM) is considered with respect to the

area element dS on dM induced by the Riemannian metric on N. Since

y: W2(M)^L2(dM) is continuous, there exists a finite constant C > 0 such

that

||y(w - wk); L2(dM)\\ ^ C||w - wk; W2

l(M)\\.

In view of wk e C°°(M) c= C(M) we have ywk = wk on dM and therefore we

deduce

(4.6) lim ||yw - wk; L2(dM)\\ = 0.

Considering da as a (d — l)-form on dM we can write da = adS on M

with a smooth function α defined on dM. By the Schwarz inequality and

(4.6) we see that

(yw — wk)dα = (yw — wk)0dS g
J δM J dM J dM

ί \\a; L2(dM)\\ ||yw - wk; L2(flAf)|| -> 0 (k ΐ oo),

i.e. we have shown that

(4.7) lim (yw - wk)dα = 0.
fctoo J BM
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Next, using the Stokes formula and the property (4.1): J M d w Λ ί / α = 0,
we proceed as follows:

Λ dαwfcdα = d(\vkdoc) = dwk
J dM JM JM

= dwk Λ doc — dw Λ dα = I
JM JM JM

— dw) Λ dα.

Hence by the wedge inequality (Lemma 1.1) and the Schwarz inequality we
see that

wfedα =
J dM JM

(dwk — dw) Λ dα ^ ί \dwk -
JM

Since \\d\vk - dw; L2(M)|| = ||P(wfc - w); L2(M)|| ^ ||wfc - w; ̂ (M)!!, we deduce

^ ||dα; L2(M)|| ||wfc - w; W2

l(M)\\ ^0 (k T oo),
J dM

where we have used ||dα;L2(M)|| < oo as a consequence of the smoothness
of α in a neighborhood of M in TV. We have thus shown that

(4.8) lim wkda = 0.
*ίoo JdM

Finally, by using (4.8) and (4.7) in this order, we deduce (4.5) as follows:

(yw)dα = (yw)dα — lim wfcdα = lim (yw — wfc)dα = 0. Π
JdM JδM fcίoo J dM fcT°o J dM

5. A net of auxiliary forms

5.1. Fix an arbitrary point ξ e dM. Choose a parametric ball Bξ = B =
B ( ξ , l ) about ξ with a local parameter x = (x1, ..., xd) such that x(ξ) = 0,

B = B(ξ,l)={\x\<l},

BΓ(M = {\x\ < 1, xd > 0} and BΓidM = {\x\ < 1, xd = 0}.

We may identify the parametric ball B with the unit ball Bd = {x e Rd: |x| < 1}
in the Euclidean space Rd of dimension d and the boundary fragment

with the unit ball {|x| < 1, xd = 0) in the hypersurface Rd-1 = {x e Rd: xd = 0}
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in Rd. Hence we can consider the Euclidean area element ((d — l)-dimensional
Lebesgue measure)

dσ(x) = dx1dx2...dxd~l

on P in addition to the proper Riemannian surface element dS on dM consid-
ered on P. These two measures on P are absolutely continuous to each

other and Radon-Nikodym densities dS/dσ and dσ/dS are locally essentially

bounded on P.

We take a (d — l)-dimensional open interval Qξ = Q about ξ considered

in P given by

Q = {|x'| < 1/4 jd (i = 1,..., d - 1), xd = 0} c P.

For each point a = (α1,..., α*""1, 0) 6 β and each real number δ e (0, 1/40^/d)
we set

S(α, (5) = { |x ' '- f lΊ <δ (ί= l,...,d- l),xd = 0}

which is an open interval contained in P. The following highly technical

lemma will play a crucial role in the proof of our main theorem.

LEMMA 5.1. For any pair of points a and b in Q and any δ in (0, l/40v/d)
there exists a net {αε}εj0 of smooth (d — 2)-forms αε in N with compact supports

contained in a fixed compact subset in B such that

(5.1) fdσ - \ fdσ = lim /dαε
JS(b,δ) JS(a,δ) ε|0 J dM

for any locally dS-integrable function f defined on dM.

Since the proof is long, it will be given in 5.2-5.7 divided into 6 steps.

5.2. Let b-a = η = ( j/ 1,. . ., ηd~\ 0) and set

nι = fa^ii, »1 d~ lδd-ι,i> 0) (i = 1,..., d - 1),

where δki (k = 1,..., d — 1) is the Kronecker delta. We take d points at e Q

(i = 0, 1,..., d — 1) determined by

α0 = a and at = a^ + ηt (i = 1,..., d - 1).

If we can show the existence of nets {αίε}εj0 of smooth (d — 2)-forms αίε on

N with compact supports contained in a fixed compact subset in B such that

(5.2) ί fdσ-ί fdσ = lim ί /dαίε

J5(α{-ι,^)+f}{ JS(ai-ίtδ) ε|0 J dM
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(i = 1,..., d — 1), then αε = £?=ί αίε will satisfy (5.1). The proof of the exis-
tence of {αίε} satisfying (5.2) for an arbitrary i (1 ̂  i < d) is reduced to that
for i = 1 by interchanging the order of the components of the coordinate.

Thus we only have to prove (5.2) for i = 1, i.e. we only have to prove the

existence of a net {αε}εj0 of (d — 2)-forms αε on N with compact supports
contained in a fixed compact subset in B such that

(5.3) i fdσ- \ fdσ = lim ί fd*ε
JS(a,δ)+ηι JS(a,δ) ε|0 J dM

for a and a + η1 belonging to Q, where ηl = (η1, 0,..., 0) e Rd.
To prove (5.3) we may assume that

If not, we can find an a + ηί (η^ = (ή1, 0,..., 0) e Rd) in Q such that S(α, δ) +
rji is disjoint from S(a, δ) + η^ and 5(α, (5) in view of the choice of δ. If we

can show the existence of {αε}εj0 and {αε'}εj0 of smooth (d — 2)-forms αε and
αε' on N with compact supports contained in a fixed compact subset in B
such that

fdσ- \ fdσ = lim f /dαε
JSία.φ+ifO+ίih-if!) JS(a,δ)+ηί ε|0 J 5M

and similarly

i fdσ- \ fdσ = lim ί fda&
JS(a,δ) + ηί)+(-ηl) JS(a,δ)+η! ε|0 J dM

then αε = αε — αε' satisfies (5.3). Moreover we can assume that η1 > 0. Other-
wise we only have to replace S(a, δ) + η1 by S(α, £), i.e. S(a, δ) = (S(α, (5) + η{)

Ί~ (~^/ι) and — η1 > 0. Hence we may assume that α1 + δ < α1 — δ + f/ 1 so
that f/ 1 > 2(5.

5.3. We will prove (5.3) under the assumption that η1 > 2δ. For sim-
plicity we denote by c the midpoint of the interval [a1 + δ, α 1 — δ + ηl~\
and also the interval [α1 — δ, α1 + δ + ί/1] so that c = α1 + f/1/2* and by
p1 (p2, resp.) the half of the length of the interval [a1 + δ, a1 — δ + ηl]

(la1 - δ, a1 + δ + f/1], resp.) so that px = ηlβ - δ and ρ2 = ηlβ + δ.
We now define d — 1 functions φx, ..., φd.1 on Rd with their supports

in Bd as follows. Considering their restrictions on Bd we may also view them
as being defined on B. The first φί of these d— I functions φl9 ..., φd^
is defined simply by
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A (C*1 - c)2 + (*")2 ^ Pfλ
c)2 + (x")2)1/2 (p2 g (x1 - c)2 + (xd)2 g p2),

(Pi ^ (*' - c)2 + (xa)2).

It is a piecewise smooth continuous function on Ra with \^φt\ ^ 1 on Rd,
where F is the Euclidean gradient so that Vφ± = (dφ^/dx1,..., dφl/δxd). More
concretely we have

(5.4) dφι(x) =

^ + (xd)2 < p2 or

where the coefficients of dxl and dxd are given by

dφλ _ x1 — c dφ1 _ xd

The rest φ29 ..., φd-ι of φl are simpler:

for I < i < d. Clearly these are also piecewise smooth continuous functions
on Rd with \7φt\ ^ 1 on Rd. More precisely we see that

,„, A < . i (\xi-ai\<δ)9(5.5) dr.(x) = - i ( >

for 1 < i < d.

5.4. Using d — 1 functions φf (1 ̂  ϊ < d) defined in 5.3 we define a
(d — 2)-form α on the unit ball Bd, which is also viewed as being defined on
the parametric ball Bξ = B in the following fashion:

α = φίd(φ2d(φ3d("'d(φd_2dφd.ί)'"))) = φ1dφ2 Λ dφ3 Λ ••• Λ dφd^

Thus α is a measurable form on £d or on B. Since Φi = 0 on (x1 — c)2 +
(xd)2 ^ pf and %• = (dφjdx^dx1 = 0 on |x'| > (5 (1 < ί < d), we see that α
has a compact support in Bd or in B, and therefore, by setting α = 0 on
N\B9 α may be viewed as a (d — 2)-form on N. By computing dec using (5.4)
and (5.5) we have
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(φ2d(φ3d(' d(φd-2dφd-ι)' ')))) = dφ1 Λ dφ2 Λ dφ3 Λ •• Λ

γi ^ϊ\ dx1 Λ dx2 Λ ••• Λ dx*-1

i=l OX J

(ΓΊ ̂

+ (-lf~2 Π ~ ]dx2 Λ dx3 Λ ••• Λ dxd,
VΛdx'J

where we have set φd = φ1.
We will consider dα along δM and in reality only along Pξ = P because

dα = 0 on (δM)\P. Along P we have x* = 0 and also dxd = 0. Hence

(5.6) dα = I ΓT ——. \ dx1 Λ dx2 Λ - - Λ dxd-1

\i=ι δx /

along P. By using (5.4) and (5.5) we see that, along δM,

c1 Λ dx2 Λ '•' Λ dxd-1 on S(α, 5)U(S(α, δ) +
dα =

0 elsewhere on δM.

Since Ix1 — c\ = —(x1 — c) on 5(α, δ) and |x* — c\ = x1 — c on S(α, δ) + ηl9

we finally conclude that

-dx1 Λ dx2 Λ - Λ dxd-1 on S(α, δ\

Λ dx2 Λ * * * Λ dx*-1 on S(a, δ) + ηί9

elsewhere on δM

along δM. In terms of the measure dσ, dα along P has an expression as a
signed measure on P as follows:

(ζ 7\ dn(\ \ — (v (*} v (Ύ\}t1rτ(\ }\D'f) αα^Xj — \Xs(a,δ)+ηl\
X) ~ XS(a,δ)\X))aσ\X)

along P, where χE is the characteristic function of a subset £ of P considered
on P.

5.5. As usual we take mε(x) = ε~dm(ε-1x) (ε > 0) on Rd, where

for |x| < 1 and m(x) = 0 for |x| ^ 1, and we form the regularization (mollifier)

<PiεM = (Ψί * "O W = Φi(^ - y)™^)^
j R d

for every ε in 0 < ε < pl Π (1/40^/d) (1 ^ i < d). Clearly φlε(x) =
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c1, ...,xd) is a function of only x1 and xd so that

(5.8) dφlε — *c dx1 + -r—^dxd

and φίε(x) = φiε(xί

9..., x
d) is the function of only x1 for each i = 2, ..., d — 1

so that

(5.9) dφiε = —-^dxl (1 < i < d).

Since φt is piecewise smooth, we have

Γ 2 Γ|Fφίε(x)l = Vψi(χ — y)wε(y)dy ^ I^ViC* ~~ y)\ m

ε(y) dy
jRd J Rd

and hence we see that \Vφiε\ ^ 1 along with \7φ{\ ^1 (1 ̂  i < d). Observe
that Pφiε converges to Vφ{ as ε \ 0 a.e. on Bξ = B and even on Pξ = P except
for a set of dσ-measure zero (1 g i < d).

5.6. Using φiε — φ{ * mε (1 ̂  i < d) we define a (d — 2)-form αε on #d or
on Bξ = B by

2,e^Φd-l,ε)""))) = Ψlε^ψ^ε Λ ^Φ3β Λ "* Λ ^Φd-l,ε

Since φlβ = 0 on (x1 - c)2 + (xd)2 ^ (p2 + ε)2 and dφiε = (dφu/dxl)dxl = 0 on
|x'' - c\ > δ + ε (1 < i < d) by the similar properties of φj (1 ̂ 7 < d) and the
definitions of φjε (1 ̂  j < d), we see that αε has a compact support in Bd or
in Bξ = B and therefore, by setting αε = 0 and N\B, αε may be viewed as a
smooth (d — 2)-form on N. By computing dαε by using (5.8) and (5.9) we have

d-l

Λ -•• Λ

where we have set φdε = φlε. Hence docε along Pξ = P has a compact support
in P and an expression as a signed measure on P as follows (cf. (5.6)):

(5.10) dxε(x) = γ(x)dσ(x) along P.
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5.7. As we have seen in 5.6, the function Π?=ί (^Φΐε/^χί) (0 < ε < pt (Ί
considered on Pξ = P has a compact support in a fixed compact

subset of F, is bounded by 1 in its absolute values, and converges to the
function Y[*=} (dφjdx1) as εj,0 dσ-almost everywhere on P. Hence by the
Lebesgue dominated convergence theorem we conclude that

Γ /d-l fifn \ Γ /d-l f),n

/W ΠSW W) = lim /(x) ΠS
Jp \i=l OX / ε|0 Jp \i=l OX

for every / in locL^dM). Hence, by (5.6), den along dM is expressed as a
signed measure on P as follows:

/d-l dω.

dκ(x) = Π ~(x)dσ(x) along P

and therefore

ί fd«= { f(x)(uf\(x)}
JdM JP V=l OX J

and similarly, (5.10) implies that

ί /dαε= f /(x)(π^w)
JθM JP \i=l ^ /

Hence we have shown that

f /dα = lim I /dαε.
J5M ε|0 JaΛf

On the other hand, (5.7) implies that

f /dα = fdσ - fdσ.
JdM JS(a,δ)+ηι J S(a,δ)

We can thus conclude the validity of (5.3), and the proof of Lemma 5.1
started from 5.2 is herewith complete. Π

6. A boundary characteristic function

6.1. As before we denote by B(ξ, 2) a relatively compact parametric ball
in N at ξ e N with a local parameter x = (x1, ..., xd) such that x(ξ) = 0 and
B(ξ, 2) = {|x| < 2}. We also denote by B(ξ, r) the concentric parametric ball
{\x\ < r} (0 < r ^ 2). The closed parametric ball B(ξ, r) is simply denoted by
B(ξ, r). Since dM consists of a finite number of mutually disjoint smooth
closed hypersurfaces of class C°° with JV\M = N\M, we can find a B(ξ, 2)
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for any ξ e dM such that

ξ, 2)ΠM = {|x| < 2, xd > 0} and B(ξ, 2)Γ\dM = {\x\ <2,xd = 0}.

We will show that the characteristic function on dM of B(ξ, 1) Π dM for each
ξedM is a Sobolev boundary values on dM of a function in Wp(M) when
1 < p < 2.

LEMMA 6.1. There exists a bounded continuous function f in
(1 < p < 2) /or any ξ in dM such that f has the boundary values 1 on B(ξ, 1)Π
dM and 0 on (dM)\B(ξ, 1) so that the trace yf on dM of f takes either 0 or
1 a.e. on dM.

The proof of this lemma (cf. e.g. [13], [14], [4]) will be given in 6.2
and 6.3 below.

6.2. We denote by γ^ the spherical surface fragment B(ζ, 1) Π dM and by

y0 the spherical cone {xd = 1 - |x'|(l*'l < 1)}, where x = (x1, ..., x*"1, xd) =
(x', xd) so that x' = (x1, ..., x*"1). Consider the region V bounded by y0 and
γ^. dV = y 0U7ι. Define a function / on M by

/(0=

We see that /e C(M), 0 ^/< 1 on M and / has the boundary values 1 on
yί and 0 on (dM)^. Since yAyi is of surface measure zero considered on
3M , the trace y/ of / on dM is either 1 or 0 a.e. on dM if we know that

The proof is over if we can show that /e W^(M). Considering X =
B(ξ, 2) Π M as a Riemannian submanifold of M, we see that / vanishes in a
neighborhood of the relative boundary dMX of X relative to M and on M\X.
Hence it suffices to show that /e W*(X) in order to maintain /e W*(M). We
view y = {x 6 Rd: |x| < 2, xd > 0} as an Euclidean subspace of Rd. Let (00 (x))
be the components of the metric tensor in B(ξ, 2) in the Riemannian manifold
N with respect to the local parameter x = (x1, . . . , xd) in B(ξ, 2). Since B(ξ, 2)
is relatively compact in AT, there exists a finite constant C ^ 1 such that

on £(£, 2) so that

C'1^0') ̂  (gij(x)) ^ C(δij) and C~d/2dx ^dV^ Cd/2dx

on B(ί, 2), where (gV(x)) = (giJ(x)Γl, g(x) = det(^(x)) and d7(x) = ^/g(x)dx.
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We can identify X with (7, 0fJ (x)). Thus the above inequalities imply that a
function φ on X (and hence on Y) belongs to Wp(X) if and only if φ e Wp(Ύ\
and

C-(i/2+-/2rt||φ; ̂ ι(y)|| <c ||φ; wι(χ)ll £ Cι/2-n/2Ίφ. Wp

l(Y)\\.

In view of this we only have to prove that /e Wp(U) viewing / as the
function on U = (Rd)+ ={xe Rd: xd > 0} defined by

where Z = {x e Rd: 0 < xd < 1 - \x'\(\x'\ < I)}. Clearly /e Cί^ΠLJl/) and
/ is absolutely continuous on all lines in U parallel to coordinate axes. We
will see below in 6.3 that the ordinary gradient Vf of / is pth integrable on U.
Hence by the Nikodym theorem (cf. e.g. [7]) we can conclude that fe Wp(U).

6.3. The ordinary gradient Vf of / considered on U is given as follows:

x,/(x), - 1/(1 - |x'D) (* e Z\{x' = 0}),

where Vx, = (d/dx\ ..., d/dx*"1) so that

P*'/(x) = - (̂1 - IxΊΓ

for x e Z\{x' = 0}. Observe that

\\rf-, Lp(U)\\ =

Hence by

\rf\> = (|^/|2 + |δ//δxdι2^ ^ (|F^/I + \df/dxd\γ ^
we see that

||F/; Lp(Z)\\ ^ 2** ί (|P^/(x)r + \df(x)/dxd\*>)dx.
Jz

The right hand side of the above inequality equals, by the Fubini theorem,

2p ί f ί' ^ ' ((^d)V(l - l*
J|jc'|<l \Jθ

= C I (1 - Ix'l)1-^',
J|x'|<l
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where C = 2p(l/2p+ΐ(p + 1) + 1/2). If we denote by dωd^ the area element
on \x'\ = 1, then we have

f (1 - Ix'lΓW = f (T (1 - rγ-*rd-2dλdωd^(x')
J|χ'|<l J|χ'|=l \Jθ /

g αW{|x'| = 1}) Γ (1 - rf-*dr = αW{|x'| = l})/(2 - p) < oo,
Jo

where (^^({Ix'l = 1}) is the area of {|x'| = 1} under the convention

ωι({|xΊ = 1}) = 2 with dω1 = dδe + dδ_e (e = (1, 0)) when d = 2. Here the
assumption 1 < p < 2 is essentially made use of. Thus ||P/; LP(U)\\ < oo and
we have established that /e W*(U).

The proof of Lemma 6.1 is herewith complete. Π

7. Proof of the main theorem

7.1. We divide the assertion of the main theorem stated in the introduc-
tory part at the begining of this paper into two parts, Theorems 7.1 and 7.2
below, and we will prove them separately in this last section. The first part
is formulated as follows:

THEOREM 7.1. Suppose that 2 ̂  p < oo and choose an arbitrary stf in
jtfp(M). Any p-Dirichlet finite ^-harmonic measure w on M can be continu-
ously extended to M = M U dM and the extended continuous function w on M
is identically zero or one on each component of dM.

PROOF. Take an arbitrary p-Dirichlet finite ^/-harmonic measure w on
M with exponent p in 2 ̂  p < oo. Since M is compact in N, the Riemannian
volume |M| of M is finite:

|M| = dV < oo.

By the Holder inequality we see that

/2||w; W2

ί(M)\\ ^ |MΓ1/p||w; Wϊ(M)\\.

Since w e W*(M), the above inequality assures that w e W^M). Consider the
Maz'ya decomposition (2.8), and actually the classical Weyl decomposition,
of w:

(7.1) w =

where ueH2(M)nWj(M) and /e W2\0(M). By (1.5) we see that the trace
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(7.2) γf = 0 dS-a.e. on dM.

By Proposition 3.1, we have yw e {0, 1} dS-a.e. on dM. Therefore, since yu =
yw — γf, we conclude that

(7.3) ywe{0, 1} dS-a.e. on δM.

Again by Proposition 3.1 we deduce that u is 2-Dirichlet finite 2-harmonic

measure on M.
Let dM = y/=1 (dM)j be the decomposition of dM into connected compo-

nents (dM)j (j = 1, ...,/). We next show that for each component (dM)j of
dM (j — 1, ...,/) there exists a constant c, which is either 1 or 0 such that

(7.4) (yu)\(dM)j = Cj dS-a.e.

To see this choose an arbitrary point ξ e dM and any relatively compact

parametric ball Bξ = B = B(ξ, 1) with a local parameter x = (x1, . .., xd) such

that x(£) = 0, B = {\x\ < 1}, β(ΊM = (|x| < 1, xd > 0} and

Pξ = P:=BΓidM = {\x\ < l,xd = 0}.

We denote by dσ(x) the Euclidean area element dxl...dxd~l on P. Recall

that dσ and dS are mutually absolutely continuous on P. Let

Qξ = Q := (I*Ί < 1/Vd (i = 1, ..., d - 1), *d = 0} c P.

To prove (7.4) we only have to show that

(7.5) (yu)\Q = c Aτ-a.e.,

where c is either 0 or 1. By (7.3) and the Lebesgue density theorem there

exists a measurable subset Qf of Q such that σ(Q\Q) = 0, every point p in
Q is a Lebesgue point for γu, and γu(p) e (0, 1} for any p e Q'. To maintain

(7.5) we only have to show that

(7.6) γu(a) = γu(b)

for every pair of points a and b in Q'.
Take an arbitrary δ e (0, 1/40^) and set

S(a, δ) = {x e B: \xl - al\ < δ (i = 1, ..., d - 1), xd = 0} c β,

where α = (α1, ..., ad-1, 0) e β'. By Lemma 5.1 there exists a net {αε}εio of
smooth (d — 2)-forms αε in N with compact supports in B such that

(7.7) (γu)dσ - (γu)dσ = lim (yu)dαε.
Js(b,^) JS(α,^) ε|0 J dM
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Lemma 4.2 assures that

Jdl

(7.8)
IdM

for any αε in the net {αε}εio. By σ(S(a9 δ)) = σ(S(b, δ)) for any δ e (0,
(7.7) and (7.8), we conclude that

σ(S(a, δ

On letting δ J, 0, the Lebesgue density theorem implies (7.6). Thus the relation
(7.4) has been shown.

By (7.1), (7.2) and (7.4), we see that

In view of this, Proposition 2.2 assures that the boundary values of w on
(dM)j is Cj (j = 1, ..., /), w can be continued to M = MUdM so as to be a
continuous function on M. Π

7.2. Fix an arbitrary point ξ in dM and any relatively compact
parametric ball B(ξ, 2) with a local parameter x = (x1, . . . , xd) such that x(ξ) =
0, B(ξ, 2) = (|x| < 2}, B(ξ, 2)ΠM = {|χ| < 2, xd > 0} and

We denote by B = B(ξ, 1) = {|x| < 1}. The second of two parts into which
the main theorem is divided is formulated as follows (cf. [13], [14], [4]):

THEOREM 7.2. Suppose that 1 < p < 2 and choose an arbitrary jtf in

jtfp(M). There exists a p-Dirichlet finite ^/-harmonic measure w on M such
that the boundary values of w is one on BΓ\dM and zero on (dM)\B. In

particular, the function w cannot be extended to M = M U dM so as to be a
continuous function on M.

PROOF. Since 1 < p < 2, by Lemma 6.1, we can find an / in Wp(M)
such that the boundary values of / is one on B Π dM and zero on (dM)\B.
In view of the fact that (dB)Γi dM is a C°° hypersurface in the boundary
manifold δM, we see that

Hence yfε (0, 1} dS-a.e. on dM. Let w = π%f be the ^/-harmonic part of
/ given by the Maz'ya decomposition (2.8). By Corollary 3.1, we conclude

that w is a p-Dirichlet finite j^-harmonic measure on M. Since y(f — w) = 0



136 Mitsuru NAKAI

dS-a.e. on dM by (1.5), we see that yw = 1 dS-a.e. on BftdM and yw = 0
dS-a.Q. on (dM)\B. By virtue of the fact that B Π dM and (SM)\5 are open
subset of dM, Proposition 2.2 assures that the boundary values of w on
BΓ\dM are identically one and those on (dM)\B are identically zero.

Since (dB)Γ\dM is a nonempty subset of dM, we can find a point ξ in
(<9£)Π<3M so that ξ belongs both to B f t d M and (dM)\B. By the above
boundary behavior of w, we see that w cannot be continuous at ξ. Thus w
cannot be continued to M = M U δM so as to be continuous on M. Π

APPENDIX. The case of p > d on general M

We take as in 1.1, a Riemannian manifold N of class C°° of dimension
d ^ 2, connected and orientable. We fix an arbitrary relatively compact sub-
region M of N. We do not require any sort of regularity condition whatso-
ever upon the relative boundary dM = M\M of M. The number of connected
components of dM may or may not be finite. In short, we only assume that
M is a nonempty connected open subset of N and M is compact in N so
that we may say that MUδM is a compact bordered Riemannian manifold
of class C°° of dimension d = dim M ̂  2 with a general border dM. We
can consider the class jtfp(M) of all operators $i on M satisfying (2.1)-(2.5).
Using an j/ 6 <stfp(M) (1 < p < oo) we can also consider ^/-harmonic measures
on M as in §3 and their p-Dirichlet integrals over M. We mention the
following final result.

THEOREM A. Suppose that d < p < oo and choose an arbitrary s# in
jtfp(M). Any p-Dirichlet finite ^-harmonic measure w on M can be continu-
ously extended to M = M U dM and the extended continuous function w on M
is identically zero or one on each connected component of dM.

PROOF. By 3.1, w = 0 on M, w = 1 on M, or 0 < w < 1 on M. In the
first two cases the theorem is trivially true and hence hereafter in this proof
we assume that 0 < w < 1 on M. Then, by 3.2, we see that w(M) = (0, 1) =
{λ e R: 0 < λ < 1}. By the proof of Proposition 3.1 (see also [14]), we have
5 := w(l — w) e W^o(M). We maintain that 5 can be continuously extended
to M and vanishes on dM:

(A.I) seC(M) and s\dM = Q.

If N = Rd, this is nothing but the Sobolev imbedding theorem for p > d. In
the case of our present general N, we take the following indirect procedure
to prove (A.I). On setting t = s on M and t = 0 on JV\M we see that
teWpt0(N) along with seW^0(M). Let (fa) be a partition of unity on N
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subordinate to a locally finite covering of N by parametric balls. Suppose
that the support of ψi is contained in a parametric ball Bt in N. Viewing
BI c= Rd we see that ί̂ e W^0 (£,-)• Since p > d, by the Sobolev imbedding
theorem (cf. e.g. [7]), there is a vte Wpt0(Bi)Γ\ C(5f) such that ι?f = \l/tt a.e. on
Bt. Clearly we can view υt e Wp\0(N) Π C(N) by setting vt = 0 on N\Bt. Then,
since vt = \l/tt = 0 a.e. on N\M9 v := ̂ ^ e Wp\0(N)Γi C(N) and

a.e. on N. This means that s = t\M has a continuous extension to M, i.e.
se W£0(Λf)nC(M). Since the j/-Perron solution HS

M is identical with the
Sobolev solution with data s on M (cf. [2]) which is identically zero by
s e Wpt0(M), we conclude that //^ = 0 on M. Take any y e dM and observe
that the p-capacity capp{y} > 0 because p > d. Hence y is ^-Dirichlet regu-
lar so that

s(y) = lim H»(x) = 0
xeM,x->y

(cf. [2]). We have thus shown (A.I).
Since ^/s = *Jw(l - w) <^ (w + (1 - w))/2 = 1/2, we see that 0 ̂  s g 1/4

on M and 5 = 1/4 if and only if w = 1/2. We denote by

K = {x e M: s(x) = 1/4}.

By virtue of (A.I), K is a compact subset of M. We fix an arbitrary relatively
compact subregion X of M with the following properties: X => K; X is bounded
by a finite number of disjoint closed smooth hypersurfaces; M\X consists of
a finite number of relatively noncompact subregions of M. Take an arbitrary
boundary component y of M, i.e. y is a connected component of dM. In
view of the Kerekjarto-Stoilow representation of boundary components as
determining sequences (cf. e.g. [17]), there is a unique connected component
Yy of M\X with the following property: for any y e y there is a small
parametric ball B(y, r) (r > 0) such that B(y, r)ΠM c Ύy so that y a Ύr We
maintain that either w < 1/2 on Yy or w > 1/2 on Yr In fact, if there are
two points xί and x2 on Yy with w(xx) < 1/2 and w(x2) > 1/2, then, since Yy

is arcwise connected, there is a polygonal line L in Yy connecting x^ and x2

The intermediate value theorem yields the existence of a z e L with w(z) = 1/2
so that z e K, contradicting Yy Π K = 0. Now suppose that w < 1/2 on Yy

is the case. Then w(x)(l — w(x)) = s(x) with w(x) < 1/2 implies that

w(x) = 1/2 - (v/1 - 45(x))/2 (x e Yy).

This with (A.I) assures that
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lim vv(x) = lim w(x) = 1/2 - / 1 - 4 lim s(x) } 2 = 0
xeM,x^y xeYy,χ->y \V xeYΓχ->y

for every y e y. Similarly, if w > 1/2 on Ύy is the case, then

w(x) = 1/2 + (v/1 - 4φ))/2 (x e 7y),

and we have limxeM ^^^ w(x) = 1 for every y € y. This proves that w can be
extended to M so as to satisfy w e C(M) and the extended w = 0 or 1 on
each connected component y of 3M . Π
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