Open Access
2005 On the Riemann integrability of the $n$-th local modulus of continuity
Steffen J. Goebbels
Funct. Approx. Comment. Math. 34: 7-17 (2005). DOI: 10.7169/facm/1538186583

Abstract

The present note proves Riemann integrability of the $n$-th local modulus of continuity which is used within the definition of averaged moduli of smoothness ($\tau$-moduli). In addition it is shown that an averaged supremum norm ($\delta$-norm) can be calculated using the Riemann integral.

Citation

Download Citation

Steffen J. Goebbels. "On the Riemann integrability of the $n$-th local modulus of continuity." Funct. Approx. Comment. Math. 34 7 - 17, 2005. https://doi.org/10.7169/facm/1538186583

Information

Published: 2005
First available in Project Euclid: 29 September 2018

zbMATH: 1123.26008
MathSciNet: MR2269660
Digital Object Identifier: 10.7169/facm/1538186583

Subjects:
Primary: 26A42
Secondary: 26A15 , 41A25 , 41A99

Keywords: averaged modulus of smoothness , local modulus of continuity , Riemann integrability

Rights: Copyright © 2005 Adam Mickiewicz University

Back to Top