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ON THE RIEMANN INTEGRABILITY OF THE n-TH LOCAL 
MODULUS OF CONTINUITY 
STEFFEN J. GOEBBELS 

Abstract: The present note proves Riemann integrability of then-th local modulus of continuity 
which is used within the definition of averaged moduli of smoothness ( r-moduli). In addition 
it is shown that an averaged supremum norm (6-norm) can be calculated using the Riemann 
integral. 
Keywords: Averaged modulus of smoothness, local modulus of continuity, Riemann integrabi­
lity. 

1. Introduction 

This paper deals with moduli of continuity. To this end, let us first introduce 
some notations. B[a, bJ denotes the space of bounded, real valued functions on a 
compact interval [a, b]. Let f E B[a, bJ and n EN where N = {l, 2, ... } is the set 
of natural numbers. The n-th difference of / at a point x E [a, b] is defined as 

Lihf(x) := I)-ir-j (~)t(x + jh). 
j=O J 

We deal with the n-th local modulus of continuity of f at a point x E [a, b]. For 
6 > 0 it is defined as 

wn(6, f, x) := sup { ILih/(t)! : t, t + nh E [x - 6, x + 6] n [a, b], O::;; h::;; 
2
:}. (1.1) 

Lebesgue integrability of Wn ( 6, f, ·) is well known for Lebesgue measurable, boun­
ded functions f (cf. [5], p. 12ff). Nevertheless, because Riemann integrability of 
these f is equivalent to (see [5], p. 11, cf. Section 5, (5.3)) 

lim L- fbw1(6,f,t)dt=0, (1.2) 
0- 0+ la 
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it seems quite natural to replace the Lebesgue integral by a Riemann integral. 
Therefore, apart from Sendov's and Korovkin's definition of r-moduli via the 
Lebesgue integral, the following definition is established in the context of functions 
f belonging to the space R[a,b] of Riemann integrable functions (cf. [1], [2], [3], 
[6], 1::;;; p < 00 ): 

[

-b l ¼ 
Tn,p(8, f) := 1 Wn(8, J, t)P dt (1.3) 

The upper Riemann integral in (1.3) can be replaced by the Riemann integral in 
case n = 1. In this connection it would be desirable to use the Riemann integral 
for all n. Unfortunately, the short proof for n = I (see [3], pp. 276-277) strongly 
depends on the structure of the first difference, which is devided into two first 
differences. Then one of the differences can be estimated using continuity fol­
lowing from Riemann integrability of f. This gives continuity of w1 ( 8, J, •) a.e. 
and therefore Riemann integrability. However, the argument does not work for 
higher differences. 

In what follows Riemann integrability of Wn ( 8,J, x) is proved for arbitrary 
n (see Theorem 4.1) using a different approach. First we discuss the monotonicity 
of slightly modified local moduli for bounded functions f. Here we do not only 
get Riemann integrability of these moduli but also of a local supremum of f. 
The 8-norm, which is often defined by an upper Riemann integral of this local 
supremum (cf. [1], [6]), can therefore generally be rewritten using the Riemann 
integral. The second step of the proof utilizes Riemann integrability of f in order 
to extend the first result to the original local modulus (1.1). This is similar to the 
proof of Lebesgue measurability in [5], p. 12ff, where also two steps are performed 
and measurability of f only is used in the final step. The paper concludes with 
the well known characterization (1.2) of Riemann integrability which now can be 
written using Riemann integrals only. 

2. Using monotonicity 

To show integrability of local moduli of continuity for arbitrary differences we first 
establish a theorem by using properties of a local supremum. Here monotonicity 
leads to continuity thus proving Riemann integrability. In this section Riemann 
integrability of f and the structure of the n-th difference are not used. 

Theorem 2.1. Let f E B[a, b] and 

{ Fh : B[t, t + h] -t JR : h ~ 0, t, t + h E [a, bl} 

be a family of bounded functionals with IFhgl ::;;; Cllgll B[t,t+h] for a constant 
C < oo independent oft, hand g, where llglla[c,d] := sup{lg(s)I: s E [c,d]}. For 
k E No N U { 0} , x E [a, b] and 8 > 0 let 

wF(8,f,x)k := sup {1Fhfl: t,t + h E [x 8,x + 8] n [a,b],O::;;; h::;;; 28 k: 
1

} 
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be a generalized local modulus of continuity. Then there holds true: 

WF(l5,J,·)k E R[a,b], 

and on [a, b] the function wp(l5, J, ·)k has not more than a countable set of points 
of discontinuity. 

Proof. We have to show that, apart from a countable set of points, wp(6, J, ·)k is 
continuous on [a, b]. Then Riemann integrability follows because of the bounded­
ness llwp(6,J,·)kilB[a,bl :( Cjl/llB[a,bJ· On [a,min{a+6,b}] the function wp(l5,J,·)k 
is increasing, on [ max { a, b - l5}, b] it is decreasing. Therefore, on these intervals 
it is discontinuous only for a countable set of points. If one has b - 6 :( a + 6 
the theorem is proven. Therefore, let a+ l5 < b - l5 and x0 E (a+ 6, b - l5). For 
convenience we set ho := 26 k!i. Consider the following condition: There exists 
v > 0 with xo + v :( b l5 such that for all t E [xo, xo + v] there holds true 

(2.1) 

Case 1: Condition (2.1) holds true. Then we distinguish between two further 
cases: 
Case la: There exists Vx 0 > 0, Vx 0 :( v such that for all t E [xo, Xo + Vx 0 ]: 

Case lb: If Case la does not hold t.rue, then there exists 

Xo E ( xo, xo + min { v, k ! 1}) (2.2) 

such that 
{2.3) 

Because of (2.2) one gets 

and 

sup { IFUI : t, t + h E [ xo 6 + k : 
1

, xo + o] , 0 :( h :( ho} :( 

:( wp(l5,f, xa)k. (2.4) 

With (2.3) and (2.4) it follows that 

sup {IF~/1: t E [xo l5, xo , 0 :( h :( ho} = wp(l5, J, xo)k. (2.5) 
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Because of 

{ t h : t E [ Xo + 6 ! 1 , xo + 6] , 0 ~ h ~ ho} = 

= [ Xo + 6 k ! 1 - ho, Xo + 6] = [ Xo - 6 + k ! 1 , Xo + 6] 

and (2.4) we conclude 

wF(6,f,xo)k~sup{1Fthfl:tE [xo+6- k!
1
,xo+6],o~h~ho}• {2.6) 

Putting together (2.5), (2.3) and (2.6) one gets 

sup { IFkfl : t E [ Xo 6, xo 6 + k ! 1] , 0 ~ h ~ ho} > 

>sup{wi-hJl:tE [xo+6- k!1,xo+6],o~h~ho}• (2.7) 

Case 2: Suppose condition (2.1) is not valid. We show that wF(6,J, ·)k 1s in­

creasing on [xo,xo + k:ti]. To this end, let x1, x2 E ( xo, xo + k:ti] with x1 < x2. 

Because (2.1) does not hold true, there exists x,, E (x0 ,x1) such that 

(2.8) 

This gives 

sup{!Fl/1:tE [x,,-6,_xo-6+ k! 1],o~h~ho}~ 

~sup{IFh/1:tE [xo-6,x0 -6+ k!l],o~h~ho} ~ 
~ WF(6,J,xo)k < WF(6,J,x,,)k, (2.9) 

Note that, if one would replace condition O ~ h ~ ho by O ~ h ~ 26 in (2.9), the 
estimation by wF(6, f, xo)k would not be possible. Obviously, 

WF(6,f, x1)k = sup {!Fl/I : t, t + h E [x1 - 6, xi+ 6] n [a, bl, 0 ~ h ~ ho} ~ 

~ sup { IF~/1 : t, t + h E [x,, - 6, xi + 6] n [a, b], 0 ~ h ~ ho} , 

and therefore by (2.9) 

WF(6,/,x1)k ~ 

~ sup {IFk/1: t, t + h E [x,, - 6, x1 + 6] n [a, b], 0 ~ h ~ ho} 

= sup { IFkfl : t, t + h E [ xo 6 + k ~ 
1

, x1 + 6] n [a, bl, 0 ~ h ~ ho} ~ 
~ sup { IF,~/1 : t, t + h E [x2 - 6, x2 + 6] n [a, b], 0 ~ h ~ ho} = 
= WF(6, f,x2)k. 
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Thus, WF(<5,f, •)k is increasing on ( xo, xo + k~l]. Together with (2.8) one has 

and WF(<5,J,·)k is increasing on [xo,xo + k~i]. 
To summarize the results of Case 1 and Case 2 we define 

A ·-.- u [xo, Xo + Vxo] 

xoE(a+o,b-6): for xo Case la holds true 

[ 2<5 ] u LJ xo, xo + k + 1 . 
x0 E(a+o,b-6): for xo Case 2 holds true 

The components of connectedness of A are intervals, which are not degenerated 
to points. Therefore, one can write A as a countable union of disjunct intervals 
such that wF(o, J, •)k is increasing on each single interval, i.e., wF(o, J, •)k has not 
more than a countable set of points of discontinuity on each interval. Apart from 
a countable set of points each point in A is an inner point of A. This means that 
w F( <5, f, • )k is continuous with respect to [a, b] at all but a countable set of points 
of A. 

One gets similar results if one discusses the following condition instead of 
(2.1): There exists v > 0 with xo - v ~ a+ <5 such that for all t E [xo - v, xoJ 
there holds true 

WF(<5,J,t)k ~WF(<5,f,xo)k, (2.10) 

If this condition holds true for some x0 , either wp(<5,J,·)k is constant on an 
interval [xo - Vx 0 , xo] or one has 

sup { w1-h J 1 : t E [ Xo + & 

> sup { IFlf 1 : t E [ xo <5, xo 

~ 1 , xo + <5] , 0 ~ h ~ ho} > 

<5 + _<5_] ,0 ~ h ~ho}. 
k+l 

(2.11) 

If condition (2.10) is false for x0 , it follows that wp(<5,J,·)k is decreasing on 

[ xo - k~ 1 , xo] . Let B be the union of all these intervals and all intervals [xo -
-Vx0 , xo] where w F ( <5, J, ·) k is constant. B is a countable union of intervals such 
that wF(<5, f, ·)k is decreasing on each of those intervals. Therefore, WF(<5, J, · )k is 
continuous on B with respect to [a, b] at all but a countable set of points. 

Because inequalities (2.7) and (2.11) contradict each other at a specific xo, 
it follows: 

(a+ o, b - <5) = (Au B) n (a+ <5, b - <5). 

This shows that the set of points, at which the function WF(<5, J, •)k is not conti­
nuous, is countable. • 
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3. Riemann integrability of modified local moduli of continuity and of 
the a-norm 

Here we apply the result of the previous section ton-th differences. Let f E B[a, b], 
x E [a, b], n, k EN and 6 > 0. We define local moduli of continuity by (cf. (1.1)) 

Wn(6, f, x)k := 

:= sup { lt.j:J(t)i : t, t + nh E [x - 6, x + 6] n [a, bl, 0 ~ h ~ ~ k: 1 } · 

Furthermore, let (cf. [4]) 

1\1(6, f, x) := llflle[rnax{a,X···O},rnin{x+<S,b}] = sup{lf(t)i : t E [x - 6, x + 6] n [a, bl}. 

Notethat,incontrasttown(c5,f,·),where h ~ 26/n (cf. (1.1)),thedefinition 
of wn(6, f, ·)k indeed requires h ~ ~ k!i. This modification gives the piecewise 
monotonicity used to prove Riemann integrability in Section 2. In spite of the 
different range of h, both definitions are equivalent in the following manner: 

(3.1) 

This inequality follows from a well known feature of the global modulus of conti­
nuity 

Wn(6, f, [c, d]) := sup{lt.hf(t)i : t, t + nh E [c, d], 0 ~ h ~ 6} 

with [c,d] C [a,b]: For each j EN one has wn(i6,f,[c,d]) ~ jnwn(6,f,[c,d]) (cf. 
[5], p. 2). Choosing j = 2 and [c, d] := [x 6, x + 6] n [a, b] one gets (3.1): 

Wn(6,f,x) Wn(26/n,f,[c,d]) ~ 

~ 2nwn(6/n, f, [c, d]) = 2nwn(6, f, x)i ~ ?nwn(6, f, X)k. 

For f E R[a, b] it is well known that M(6, f, ·) E R[a, b] (see [4]). Theorem 
2.1 shows that the precondition f E R[a, b] is not necessary: 

Corollary 3.1. Let f E B[a, b], n, k EN and 6 > 0. Then one has 

wn(6,f,·)k E R[a,b], lv1(6,f,·) E R[a,bj, 

and these functions do not have more than a countable set of points of discontinuity 
-b 

in [a, b]. The 6-norm 11/llo := fa M(6, f, t) dt (cf. fl}, {6}) can be calculated via 
the Riemann integral: 

11/11.s = 1b M(6, f, t) dt. 
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Proof. The results immediately follow from Theorem 2.1 with the particular cho­
ice F~hf := 6.,:J(t) and Flf := f(t), respectively. • 

Using the Riemann integral we can now define the following slightly modified 
r-moduli for bounded functions f E B[a, b] ( 1 ~ p < oo ): 

l 

Tn,p( 8.f)k ,~ [{ w,.( 8, f, t)t dt] ' 

Because of (3.1) this new modulus behaves like Tn,p(8, J) (cf. (1.3)): 

Tn,p(o, J)k ~ Tn,p( 8, f) ~ 2nTn,p(o,f)k. 

The s~quence (wn(o,f,x)k)k= 1 is pointwise (with respect to x) convergent 
to 

Wn(o,J, x) := sup {16.hf(t)I : t, t + nh E [x - o, x + 6) n [a, bj, 0 ~ h < 26/n}. 

With Beppo-Levi's theorem Lebesgue integrability of the limit function follows 
and 

and 

1 

,Ii.'! Tn,p( 8, f)k [ L- { Wn( 8, f, t)P dt] ' 

Since Wn(o,J,x) = '21n(o,J,x) for x E [a,min{a + 6,b}) U (max{a,b- o},b] 

wn(6,f,x) = max{wn(o,f,x), 16.~f(x- o)I} 
for x E [a + o, oo) n (-oo, b - 6] one gets Lebesgue measurability of Wn ( 6,f, ·) for 
each measurable and bounded f (see [5], p. 12ff, for a similar proof). 

In order to show Riemann integrability of wn(6, J, •) we now give a slightly 
different argument using Corollary 3.1 and Riemann integrability of f. 

4. Riemann integrability of the n-th local modulus of continuity 

Since T n,p ( o, ·) typically is used in connection with Riemann integrable functions, 
the following limitation to f E R[a, b] is of no practical impact. 

Theorem 4.1. Let n EN and o > 0. For each f E R[a,b] one has wn(o,J,·) E 
E R[a,b]. 

Proof. Since f E R[a, b], the set A of points of discontinuity of f on [a, b] has 
Lebesgue measure zero. Because of A the Lebesgue measure of 

n { B1 := ~ x E (-oo, b- o] n [a+ 6, oo): f is not continuous at x , .26} 
u +J = 

n 

n [( 25) ] = _kJo o-j-;;: +A n[(-oo,b-6Jn[a+6,oo)] 
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is zero, too. The set 

00 

B2 := LJ{x E (a,b): wn(8,f,·)j is not continuous at x} 
j=l 

is a countable union of countable sets (see Corollary 3.1). Therefore the Lebesgue 
measure of B := Bi U B2 is zero. 

We now show the continuity of wn(6,f,·) for each xo E [a,b] \ B. Since 
wn(6, f, •) is bounded, Riemann integrability then follows. 

Case 1: Here we deal with the situation that d := min { b, xo + 6} - max{ a, 
xo 6} < 26, i.e., xo is near the boundary of [a, bJ. We choose k E N such 
that 26 k!l > d and set 8d := 26 k!l - d. Then wn(6,f, t) = wn(6,J, t)k for all 
t E (xo 6d, xo + 6d) n [a, bJ. Since wn(6, J, · )k is continuous at x0 , this also holds 
true for Wn ( 6,f, ·). 

Alternatively, one immediately can show the continuity of wn(6,f, ·) a.e. on 
[a, min{a+6, b }J and [max{a, b-6}, bJ by utilizing the monotonicity of the function 
(cf. proof of Theorem 2.1). 

Case 2: Here we discuss [xo - 8, xo + 6] C [a, b]. Since xo (/. B, the function f 
is continuous at tj := x0 - 6 + j ~ , 0 ~ j ~ n . For each £ > 0 there exists 
0 < 6., < 46 such that 

( 4.1) 

for all x 1 , x2 E (tj 6.,, tj + 8.,) n [a, b), 0 ~ j ~ n. Now we select k EN such that 

26 k 2 ( ho:= - > - 6 
n k + 1 n 

6e) 
4 . (4.2) 

Because of (cf. (1.1)) 

wn(8, J, x) max{ sup{lb.,!f(t)I : t, t + nh E [x 6, x + 6] n [a, bl, 0 ~ h ~ ho}, 

sup{lb.,!f(t)I : t, t + nh E [x - 6, x + 6] n [a, b), ho < h ~ 28/n}} = 

= max{wn(6,J, x)k, Sn(6, ho,!, x)} 

and the continuity of wn(6,f,·)k at x0 (see definition of B), it remains to prove 
the continuity of 

Sn(6, ho,f,x): sup{lb.,!f(t)I: t,t + nh E [x 6,x +6] n [a,b),ho < h ~ 26/n} 

at xo. For x 1 E (xo - ~,xo + ~) n [a,b] and t,t+nh E [x1 6,x1 +6] n [a,bJ as 
well ash> ho and O ~ j ( n the choice of ho {see (4.2)) implies 

t E [x1 - 6,x1 + o - nho) C [xi - 6,xi - 8 + i), 
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so that because of (4.2) one has 

The continuity estimate ( 4.1) in connection with ( 4.3) leads to 

ll~hf(t)I - !~llf(xo - 6)11 ~ l~hf(t) - ~llf(xo - 6)/ ~ 
n n 

That means 

~ t (~) lf(t + jh) - f(tj )I < 2n 2n£+2. 
j=O J 

ISn(6,ho,f,x1)-- ~;t(xo -6)1 ~ 1, 

(4.3) 

which gives continuity at xo since for each pair x1, x2 E ( xo ~, xo + ~) n [a, bj 
we have 

• 

5. Characterization of Riemann integrability 

Without the explicit use of upper Riemann sums or Lebesgue integrals one has 
the following characterization (5.1) of Riemann integrability: 

Theorem 5.1. Let f E B[a, bj. Then for each k E N there holds true (1 ~ p < oo) 

f E R[a, b] {:::::::} .s~W+ ,1,p(6, f)k = 0, 

f E R[a, b] =} .s~W+ ,1,p( 6, f) = 0. 

If f is measurable, then one has (cf. 1.2) 

f E R[a, b] {:::::::} lim L-1b w1(6, f, t)P dt = 0. 
o-o+ a 

(5.1) 

(5.2) 

(5.3) 

Proof. The proof is well known if one replaces Riemann by Lebesgue integrals 
(cf. [5], p. 11). Nevertheless, the proof is given here for the sake of completeness. 
Because f is bounded, one only has to deal with the continuity of f. Since for 
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Xo E [a, b] continuity off at xo is equivalent to limj_,00 w1(l/j, f, xo)k = 0, one 
has 

f E R[a, b] <=> Hm w1 (1/ j, f, · )k 0 a.e. (5.4) 
J->00 

We apply Beppo-Levi's theorem to the increasing sequence of functions 

and get 
b 

Hm TJ,p(l/j,f)t = L-1 Um w1(l/j,f,t): dt. 
J--•OO a J-'>00 

(5.5) 

For f E R[a, b] it follows from (5.4) and (5.5) that limj_.00 r1,p(l/j, f)k 0. This 
gives the right side of (5.1). In the same way (5.2) is shown. If on the other hand 
the right side of (5.1) is true, one gets with (5.5) 

b L-1 Hm w1(l/j,f,t): dt=0 
a 3->oo 

and limj_.oo w1 (1/j, f, · )k = 0 a.e. Taking (5.4) into consideration we finally get 
f E R[a,b] and therefore (5.1). Characterization (5.3) follows with the same ar­
gumentation and the fact that w1 ( 8,J, ·) is Lebesgue measurable (see Section 3). 

• 
Finally, because of wn(8, f, ·)k ~ 2n- 1w1(8, f, ·)k one has for n EN: 

f E R[a, b] ~ lim Tn,p( 8, f)k = lim Tn,v( 8, f) 0. 
c5->0+ 6->0+ 
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