Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Systems of Brownian particles with asymmetric collisions

Ioannis Karatzas, Soumik Pal, and Mykhaylo Shkolnikov

Full-text: Open access


We study systems of Brownian particles on the real line which interact by splitting the local times of collisions among themselves in an asymmetric manner. We prove strong existence and uniqueness of such processes and identify them with the collections of ordered processes in a Brownian particle system, in which the drift coëfficients, the diffusion coëfficients, and the collision local times for the individual particles are assigned according to their ranks. These Brownian systems can be viewed as generalizations of those arising in first-order models for equity markets in the context of stochastic portfolio theory, and are able to correct for several shortcomings of such models while being equally amenable to computations. We also show that, in addition to being of interest in their own right, such systems of Brownian particles arise as universal scaling limits of systems of jump processes on the integer lattice with local interactions. A key step in the proof is the analysis of a generalization of Skorokhod maps which include “local times” at the intersection of faces of the nonnegative orthant. The result extends the convergence of the totally asymmetric simple exclusion process (TASEP) to its continuous analogue. Finally, we identify those among the Brownian particle systems which have a probabilistic structure of determinantal type.


Nous étudions des systèmes de particules browniennes sur l’axe réel qui interagissent de façon asymétrique en fonction de leurs temps locaux de collision. Nous prouvons l’existence et l’unicité au sens fort de tels processus et les identifions avec un système de particules constitué d’une famille de processus browniens ordonnés où les coefficients de dérive et de diffusion, ainsi que les temps locaux de collision entre les particules, dépendent de leurs rangs. Ces systèmes browniens peuvent être compris comme des généralisations de processus stochastiques issus des marchés boursiers et de la gestion de portefeuilles. Nous pouvons pallier certaines lacunes de ces modèles tout en conservant la possibilité d’effectuer des calculs explicites. Nous montrons aussi, qu’en plus de leur intérêt intrinsèque, de tels systèmes de particules browniennes apparaissent comme des limites universelles de processus de sauts sur un réseau avec des interactions locales. Une étape clef dans la preuve est l’analyse d’une généralisation des applications de Skorokhod qui inclut les temps locaux à l’intersection des faces de l’orthant positif. Le résultat généralise la convergence du processus d’exclusion simple totalement asymétrique (TASEP) vers sa version continue. Finalement, nous identifions parmi les systèmes de particules browniennes ceux qui possèdent une structure probabiliste déterminantale.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 1 (2016), 323-354.

Received: 30 August 2013
Revised: 11 September 2014
Accepted: 19 September 2014
First available in Project Euclid: 6 January 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60H10: Stochastic ordinary differential equations [See also 34F05] 91B26: Market models (auctions, bargaining, bidding, selling, etc.)

Determinantal processes Interacting particle systems Invariance principles Reflected Brownian motions Skorokhod maps Stochastic Portfolio Theory Strong solutions of stochastic differential equations Triple collisions


Karatzas, Ioannis; Pal, Soumik; Shkolnikov, Mykhaylo. Systems of Brownian particles with asymmetric collisions. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 1, 323--354. doi:10.1214/14-AIHP646.

Export citation


  • [1] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Univ. Press, Cambridge, 2010.
  • [2] A. D. Banner, E. R. Fernholz and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab. 15 (2005) 2296–2330.
  • [3] A. D. Banner and R. Ghomrasni. Local times of ranked continuous semimartingales. Stochastic Process. Appl. 118 (2008) 1244–1253.
  • [4] R. Bass and E. Pardoux. Uniqueness for diffusions with piecewise constant coëfficients. Probab. Theory Related Fields 76 (1987) 557–572.
  • [5] S. Bhardwaj and R. J. Williams. Diffusion approximation for a heavily loaded multi-user wireless communication system with cooperation. Queueing Syst. 62 (2009) 345–382.
  • [6] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics. Wiley, New York, 1999.
  • [7] J. G. Dai and R. J. Williams. Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra. Theory Probab. Appl. 40 (1995) 3–53.
  • [8] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Statistics. Wiley, New York, 1986.
  • [9] L. Erdös and H. T. Yau. Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.) 49 (2012) 377–414.
  • [10] E. R. Fernholz. Stochastic Portfolio Theory. Springer, New York, 2002.
  • [11] E. R. Fernholz, T. Ichiba and I. Karatzas. Two Brownian particles with rank-based characteristics and skew-elastic collisions. Stochastic Process. Appl. 123 (2013) 2999–3026. Available at arXiv:1206.4350v1.
  • [12] E. R. Fernholz and I. Karatzas. Stochastic portfolio theory: An overview. In Handbook of Numerical Analysis XV 89–168. North-Holland, Amsterdam, 2009.
  • [13] T. Funaki, K. Handa and K. Uchiyama. Hydrodynamic limit of one-dimensional exclussion processes with speed change. Ann. Probab. 19 (1991) 245–265.
  • [14] V. Gorin and M. Shkolnikov. Limits of multilevel TASEP and similar processes. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 18–27. Available at arXiv:1206.3817.
  • [15] T. E. Harris. Diffusion with collision between particles. J. Appl. Probab. 2 (2) (1965) 323–338.
  • [16] J. M. Harrison and M. I. Reiman. Reflected Brownian motion on an orthant. Ann. Probab. 9 (1981) 302–308.
  • [17] J. M. Harrison and R. J. Williams. Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 15 (1987) 115–137.
  • [18] J. M. Harrison and R. J. Williams. Brownian models of open queueing networks with homogeneous customer polulations. Stochastics 22 (1987) 77–115.
  • [19] C. Howitt and J. Warren. Consistent families of Brownian motions and stochastic flows of kernels. Ann. Probab. 37 (2009) 1237–1272.
  • [20] T. Ichiba. Topics in multidimensional diffusion theory: Attainability, reflection, ergodicity and rankings. Ph.D. dissertation, Columbia Univ., 2009.
  • [21] T. Ichiba and I. Karatzas. On collisions of Brownian particles. Ann. Appl. Probab. 20 (2010) 951–977.
  • [22] T. Ichiba, I. Karatzas and M. Shkolnikov. Strong solutions of stochastic equations with rank-based coëfficients. Probab. Theory Related Fields 156 (2012) 229–248.
  • [23] T. Ichiba, V. Papathanakos, A. D. Banner, I. Karatzas and E. R. Fernholz. Hybrid atlas models. Ann. Appl. Probab. 21 (2011) 609–644.
  • [24] W. Kang and R. J. Williams. An invariance principle for semimartingale reflecting Brownian motions in domains with piecewise smooth boundaries. Ann. Appl. Probab. 17 (2007) 741–779.
  • [25] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Springer, New York, 1991.
  • [26] T. M. Liggett. Interacting Particle Systems. Classics in Mathematics. Reprint of the 1985 original. Springer, Berlin, 2005.
  • [27] N. O’Connell and J. Ortmann. Product-form invariant measures for Brownian motion with drift satisfying a skew-symmetry type condition, 2012. Available at arXiv:1201.5586.
  • [28] M. Z. Racz and M. Shkolnikov. Multidimensional sticky Brownian motions as limits of exclusion processes. Ann. Appl. Probab. 25 (2015) 1155–1188. Available at arXiv:1302.2677.
  • [29] M. I. Reiman. Open queueing networks in heavy traffic. Math. Oper. Res. 9 (1984) 441–458.
  • [30] M. I. Reiman and R. J. Williams. A boundary property of semimartingale reflecting Brownian motions. Probab. Theory Related Fields 77 (1988) 87–97.
  • [31] A. Sarantsev. Triple and multiple collisions of competing Brownian particles, 2014. Available at arXiv:1401.6255.
  • [32] A. S. Sznitman and S. R. S. Varadhan. A multidimensional process involving local time. Probab. Theory Related Fields 71 (1986) 553–579.
  • [33] S. R. S. Varadhan and R. J. Williams. Brownian motion in a wedge with oblique reflection. Commun. Pure. Appl. Math. 38 (1984) 405–443.
  • [34] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573–590.
  • [35] R. Williams. Reflected Brownian motion with skew symmetric data in a polyhedral domain. Probab. Theory Related Fields 75 (1987) 459–485.
  • [36] R. J. Williams. An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst. 30 (1998) 5–25.