Open Access
VOL. 38 | 2004 A notion of Morita equivalence between subfactors
Chapter Author(s) Nobuya Sato
Editor(s) Hideki Kosaki
Adv. Stud. Pure Math., 2004: 229-238 (2004) DOI: 10.2969/aspm/03810229

Abstract

We will review a notion of Morita equivalence between subfactors, which is a variation of Morita equivalence in ring and module theory. The main result is stated as follows: for arbitrary two Morita equivalent subfactors of hyperfinite $\mathrm{II}_1$ factors with finite Jones index and finite depth we can always choose a finite dimensional nondegenerate commuting square which gives rise to the subfactors isomorphic to the original ones. As an application of Morita equivalence between subfactors in connection with recent developments of theory of finite dimensional weak $C^*$-Hopf algebras, we will make a brief comment about the 3-dimensional topological quantum field theories obtained from subfactors with finite index and finite depth.

Information

Published: 1 January 2004
First available in Project Euclid: 1 January 2019

zbMATH: 1065.46042
MathSciNet: MR2059811

Digital Object Identifier: 10.2969/aspm/03810229

Subjects:
Primary: 46L37

Rights: Copyright © 2004 Mathematical Society of Japan

PROCEEDINGS ARTICLE
10 PAGES


Back to Top