Open Access
VOL. 55 | 2009 On ideal boundaries of some Coxeter groups
Chapter Author(s) Saeko Yamagata
Editor(s) Jean-Pierre Bourguignon, Motoko Kotani, Yoshiaki Maeda, Nobuyuki Tose
Adv. Stud. Pure Math., 2009: 345-352 (2009) DOI: 10.2969/aspm/05510345

Abstract

If a group acts geometrically (i.e., properly discontinuously, cocompactly and isometrically) on two geodesic spaces $X$ and $X'$, then an automorphism of the group induces a quasi-isometry $X \to X'$. We find a geometric action of a Coxeter group $W$ on a CAT(0) space $X$ and an automorphism $\phi$ of $W$ such that the quasi-isometry $X \to X$ arising from $\phi$ can not induce a homeomorphism on the boundary of $X$ as in the case of Gromov-hyperbolic spaces.

Information

Published: 1 January 2009
First available in Project Euclid: 28 November 2018

zbMATH: 1181.20038
MathSciNet: MR2463510

Digital Object Identifier: 10.2969/aspm/05510345

Rights: Copyright © 2009 Mathematical Society of Japan

PROCEEDINGS ARTICLE
8 PAGES


Back to Top