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On ideal boundaries of some Coxeter groups

Saeko Yamagata

Abstract.

If a group acts geometrically (i.e., properly discontinuously, co-
compactly and isometrically) on two geodesic spaces X and X', then
an automorphism of the group induces a quasi-isometry X — X', We
find a geometric action of a Coxeter group W on a CAT(0) space X
and an automorphism ¢ of W such that the quasi-isometry X — X
arising from ¢ can not induce a homeomorphism on the boundary of
X as in the case of Gromov-hyperbolic spaces.

81. Introduction

In the study of Gromov-hyperbolic spaces, it is well-known that for
two proper Gromov-hyperbolic geodesic spaces X, X', if there exists a
quasi-isometry F': X — X' then it induces a homeomorphism between
their ideal boundaries ([BH, II.H.3.9]). We explain the homeomorphism
between their ideal boundaries. For a geodesic ray -y in X there always
exists a geodesic ray +' such that the Hausdorff distance between F(v)
and 4/ is finite, therefore we define a map F : 8X 3 v(c0) = v'(c0) €
0X'. Here, we denote by y(oc0) the equivalence class of a geodesic ray
7. Then the map F is a homeomorphism between the ideal boundaries.

In the case of CAT(0) spaces, Croke—Kleiner [CK] proved that there
exists a group acting geometrically on two CAT(0) spaces whose ideal
boundaries are not homeomorphic to each other. Bowers-Ruane [BR]
found two distinct geometric actions of Fy x Z on a CAT(0) space X
and a quasi-isometry F : X — X (which is equivariant under the two
actions) such that there exists a geodesic ray v in X whose image F'(y)
does not have finite Hausdorff distance from any geodesic ray in X.
Therefore, F' can not induce a homeomorphism on dX in the same way
as in the case of Gromov-hyperbolic spaces.

On the other hand, it is known that Coxeter groups act geometrically
on some CAT(0) spaces ([M]). Let W be a Coxeter group having a
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presentation
W= (t,... ts|t2 =e (i=1,...,5), t;ty = tst; (j=1,2,3,k=4,5)),

and let (X,d) be the CAT(0) space defined in [M] on which W acts
geometrically. Let ¢ be an automorphism on W defined by

ti— t; (Z =+ 3), tg — t1tsty.

We give W a word metric dg associated to the generating set S =
{t1,ta2,...,t5}. Then for any choice of a basepoint zo € X, there exists
a quasi-isometry f : (W,dg) > w — w-z¢ € (X,d) ([BH, 1.8.19]), and
the automorphism ¢ : W — W is in fact a quasi-isometry (W, dg) —
(W,ds). Therefore, F = fogo f~1: (X,d) — (X,d) is also a quasi-
isometry. In this paper, we will prove the following theorem.

Theorem 1.1. We have a geodesic ray v in X such that there exist
no geodesic rays in X whose Hausdorff distance from F(v) is finite.

By Theorem 1.1 we know that the quasi-isometry F': X — X can
not induce a homeomorphism X — X in the same way as in the case
of Gromov-hyperbolic spaces.

§2. CAT(0) spaces and Coxeter groups

We shall recall terminologies about CAT(0) spaces and Coxeter
groups. We refer to [BH] about CAT(0) spaces.

Definition 2.1. For a metric space (X, d), a geodesic from z € X
toy € X is a map 7 : [0,!] — X such that

I =d(z,y), v(0) = z, v(I) = v,

d(y(£), 7)) =1t —t'| (vt 1" €0,1]).

We denote the image in X of a geodesic from x to y by [z, y] if we do not
specify a choice of such geodesics joining x and y, and call it a geodesic
segment. We call (X, d) a geodesic space if every two points in X can be
joined by a (not necessarily unique) geodesic.

Definition 2.2. Given a geodesic space (X,d) and a,b,c € X, we
denote by A(a,b,c) a geodesic triangle whose vertexes are a, b, ¢, and
sides are geodesic segments [a, ], [b, ], [c, a].

For any geodesic triangle A(a, b, ¢) in X, we can construct a geodesic
triangle A(@,b,¢) in the 2-dimensional Euclidean spase E? such that
dg2(a,b) = d(a,b), dg=(b,2) = d(b,c) and dg2(¢,a) = d(c,a). Here, dg>
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is a standard metric on E2. We call A(@,b,¢) a comparison triangle of
A(a, b, c).

Let z be a point in [a,b]. A point Z in [a, ] is called a comparison
point of z if dg2(@,T) = d(a,z). In the case of z € [b,c] or = € [c,a], we
define a comparison point of z in the same way.

>

b A A

Fig. 1. A geodesic triangle and its comparison triangle

Definition 2.3. Let A be a geodesic triangle in a geodesic space
(X,d), and A a comparison triangle of A. If for any z,y € A and their
comparison points T,y € A, the inequality

d(.’L‘, y) < dEZ (Ta y)

holds, then we call (X,d) a CAT(0) space.

It is easy to see that for any points z,y in a CAT(0) space, there
exists a unique geodesic joining x and y.

Definition 2.4. For a metric space (X, d), we call (X,d) a proper
metric space if for every z € X and every r > 0, the closed ball B(z, )
is compact.

Let (X,d) be a proper CAT(0) space. If a map v : [0,00) — X
satisfies

d(y(t), v(t) = [t —t'| (¥t &' €0, 00)), (0) = o,

then « is called a geodesic ray from xzg.

Two geodesic rays 7, v : [0,00) — X are said to be asymptotic if
there exists a constant K such that d(y(t),7'(t)) < K for all ¢t > 0. We
give an equivalence relation on the set of geodesic rays in X such that
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two geodesic rays are equivalent if and only if they are asymptotic. We
denote by X the set of equivalence classes of geodesic rays in X, and
give the cone topology on 80X (see [BH, 1.8.6] for the definition of the
topology).

Definition 2.5. Let (Xj,d;) and (X2,d2) be complete CAT(0)
spaces, X the product X; x X, and define a metric d on X by d =
\/d2 + d3. Let v1(c0) (resp. 72(c0)) be the equivalence class of a geo-
desic ray 11 in X3 (resp. 72 in X3).

If 6 € [0,7/2], we denote by (cos 8)yi(00) + (sin@)y2(co) the point
of X represented by the geodesic ray v(t) = (y1(tcos ), v2(¢sin 6)) in
X. The spherical join X1 * 80X is the quotient of the product 0X; x
[0,7/2] x 8X2 by the equivalence relation identifying (7y;(00), 8,72(c0))
with (v](00),8,v5(00)) if and only if either of the following conditions
are satisfied:

(1) 7m(00) =i(00),0 = 6" and y2(c0) = 75(c0);

(2) 0=26"=0andyi(c0) =71(c0);

(3) 0=0" =m/2and v2(c0) = 72(c0).

It is easy to see that the boundary X is homeomorphic to the
spherical join X * 0Xa.

Definition 2.6. Let (X, d) be a metric space. For a subset A C X
and a positive number k, we denote the k-neighbourhood of A by

Ne(Ay ={z € X|Ja€ A s.t. d(z,a) < k}.
For subsets A, B C X, the Hausdorff distance between A and B is
defined by

du(A, B) =inf{k| A C Ny(B), B C Ny(A)}.

Definition 2.7. Let (X,d) and (X’,d’) be metric spaces. If a map
f: X — X' satisfies that there exist €, k > 0, A > 1 such that

Sd(e,y) — < < d(7(@), ) < M(z,y) +e (Vo y € X),

Ni(Im f }=X !
then f is called a (), €)-quasi-isometry. If we do not specify the values
A, €, then we call f a quasi-isometry simply.

We note that if there exists a (), €)-quasi-isometry f : X — X', then
there exists a (X, &’)-quasi-isometry f~!: X’ — X (for some X, &') and
a constant k' > 0 such that d(fo f~(z'),2’) < k' and d(f Lo f(x),z) <
k' for all 2’ € X’ and all z € X. We call f~! a quasi-inverse for f.

Finally, we recall the definition of Coxeter groups.
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Definition 2.8. A Cozeter group W is a finitely presented group
having the following presentation:

W = (S|(ss")™=*) =¢ for Vs,s'€8),

where S is a non-empty finite set and m : S x S — NU{oo} is a function
satisfying the following conditions:

(1) m(s,s) =1 for Vs € S;

(2) m(s,s') =m(s,s) for Vs, s’ € S;

3) m(s,s')>2forVs#£s €8.
Here, for s,s' € S, m(s,s’) = oo means that there exists no relation
between s and s'.

83. Proof of the main theorem

In the following context, let W be the Coxeter group whose presen-
tation is given by

W= (t,.. t5|t?=e (i=1,...,5), tjty = txl; (j =1,2,3, k=4,5)).

Let H be the subgroup of W generated by t1, t2 and t3, and let H' be
the subgroup of W generated by t4, ts5.
By the presentation of W, we know that

W =H x H'
_—N;(ZZ*ZQ*ZQ)X(ZQ*ZQ).

Define an automorphism ¢ of W by
ti — tz (’L 7& 3), t3 — t1t3t1.

(Especially, ¢ is an isomorphism of the Coxeter system.)

Let T be the Cayley graph of the group H with respect to the
generating set {ti,ts,t3}, which is a regular tree of valence 3. The
Cayley graph of the group H' with respect to a generating set {t4,t5}
is isometric to R where the vertex set of this graph corresponds to Z.
Therefore, we call this graph R.

Let X be the product T' x R. Let dr (resp. dgr) be a metric on the
Cayley graph T (resp. R). A metric d on X is defined by

d((t,r), (t',r") = \/dr(t,t)2 +dg(r,7")2 (Vt,t' € T, Vr, v’ € R).

Then X is a proper CAT(0) space and is called the Davis—Vinberg com-
plex of W. The Coxeter group W acts geometrically (i.e., properly
discontinuously, cocompactly and isometrically) on X ([M]).
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Fig. 2. T xR

We give W a word metric dg with respect to the generating set
S = {t1,t2,...,t5}. Let e € X be the vertex corresponding to the unit
element. Then there exists a quasi-isometry f : (W,dg) dw— w-e € X
([BH, 1.8.19]). We can take a quasi-inverse f~! : X — W satisfying that
foranyw e W, f~Hw-e) =w

The ideal boundary of 7' is a Cantor set and the ideal boundary
of R consists of two points. Therefore, the ideal boundary of X is the
spherical join of the Cantor set and the set of two points. Since the
automorphism ¢ on W is in fact a quasi-isometry (W, ds) — (W, ds),
and f : (W,ds) — (X, d) is also a quasi-isometry, sois F'= fogo f~1:
X - X.

Theorem 3.1. We have a geodesic ray v in X such that there exist
no geodesic rays in X whose Hausdorff distance from F(v) is finite.

Proof. Put a = tita, b = tato, ¢ = t4t5 and b = titstita. We note
that ¢ commutes with a, b and &’. Then
Fla)=fodof(a-e) =f0¢(a) =fla)=a-e=a,
Fb)=fogof T (b-e)=fog(b)=ft)=b e=V,
Fle)=fogof i (c-e)= f p(c) =flc)=c-e=c
Let v be a piecewise geodesic path in X such that

e, ac) U [ac, abc?] U [abe?, abac®] U [abac?, ababc] U [ababct, abab®c®| U
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n(n-+3

—1 nnd3)
cab™ ez labab®---ab"c 2 U....

Ulabad? - -

The piecewise geodesic path - is in fact a geodesic ray in X because
the projection of v onto T is a geodesic ray passing through e, a, ab,

aba, abab, abab?, ... ,abab?ab®---ab™, ... , where the distance between
successive two points is equal to 2, and the projection of v onto R is also
geodesic ray passing through e, ¢, ¢?, ... ,c%, ..., where the distance

between successive two points is equal to 2.

Put A, = ab'ab’ab® - - ab™c™ 5. Then F() passes through each
Ap, (n € N). We will deduce a contradiction under the assumption that
there exists a geodesic ray 7' such that the Hausdorff distance between
~" and F(v) is finite.

For each n € N, the Hausdorff distance between 7’ and a geodesic
segment [e, A,] would be uniformly finite because F(vy) passes through
e and A,.

R R

& v & F(v)

ct ct

3 ~—/—\ 3

¢ ¢ o

F

c? c?

c c

e a ab aba abab abab® T e a ab' abla ablall  abab®

Fig. 3. v and F(v)

Next, we consider the slope of the geodesic segment [e, A,]. Note
that the projections of A,, onto T' and R are equal to ab’ab?ab’™- - - ab™

and ¢~ , respectively. It is easy to see that
dr(e,ab'ab®ab® - - - ab'™) = 2n(n + 2),

dr(e, cm_gﬂ) =n(n + 3).
Hence the slope of the geodesic segment [e, A, ] is n(n + 3)/2n(n + 2).
Then
n(n+3) 1
ey
2n(n + 2) 2

(n — 00).
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Therefore, the slope of v’ should be 1/2.

Finally, we calculate the distance between A, € F(y) and 7. We
take a geodesic &, which passes through A, and is orthogonal to «'.
The slope of &, must be equal to —2. Let B,, be the intersection point
of &, and +/, which is the closest point on 4" to A,. The distance
between e and the projection of B, onto T is equal to 2n(5n + 11)/5
and the distance between e and the projection of B,, onto R is equal to
n(5n + 11)/5. Therefore, the distance between A, and B, is equal to
2v/5n/5. Then

—n—0o00 (n—o00),

and therefore, the Hausdorff distance between 4 and F(7y) must be
infinite, which is a contradiction.

Consequently, we can not obtain a geodesic ray whose Hausdorff
distance from F'(vy) is finite. Q.E.D.
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