Abstract
A classical approach to study properties of $Q$-multiplicative functions $f(n)$ is to associate to the mean $\frac{1}{x} \sum_{0 \le n \le x} f(n)$ the product $\prod_{0 \le j \le k} \frac{1}{q_j} \sum_{0 \le a \le q_j-1} f(aQ_j)$. We discuss its validity in the case of non-negative $Q$-multiplicative functions $f(n)$ with a positive upper meanvalue, defined via a Cantor numeration system.
Information
Published: 1 January 2007
First available in Project Euclid: 27 January 2019
zbMATH: 1193.11094
MathSciNet: MR2405606
Digital Object Identifier: 10.2969/aspm/04910219
Subjects:
Primary:
11A25
Secondary:
11N56
,
11N64
Keywords:
$Q$-multiplicative functions
,
mean-value
Rights: Copyright © 2007 Mathematical Society of Japan