On Q-multiplicative functions having a positive upper-meanvalue

Jean-Loup Mauclaire

Abstract

. A classical approach to study properties of Q-multiplicative functions $f(n)$ is to associate to the mean $\frac{1}{x} \sum_{0 \leq n \leq x} f(n)$ the product $\prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)$. We discuss its validity in the case of non-negative Q-multiplicative functions $f(n)$ with a positive upper meanvalue, defined via a Cantor numeration system.

§1. Introduction and notations

1.1. Numeration systems and associated additive functions

Let N be the set of non-negative integers, and $Q=\left(Q_{k}\right)_{k \geq 0}, Q_{0}=1$, be an increasing sequence of positive integers. Using the greedy algorithm to every element n of N, one can associate a representation

$$
n=\sum_{k=0}^{+\infty} \varepsilon_{k}(n) Q_{k}
$$

which is unique if for every K,

$$
\sum_{k=0}^{K-1} \varepsilon_{k}(n) Q_{k}<Q_{K}
$$

Such a condition provides a numeration scale and in this case, we can define on N a complex-valued arithmetic function $f(n)$ by $f\left(0 . Q_{k}\right)=1$

[^0]and $f(n)=\prod_{k \geq 0} f\left(\varepsilon_{k}(n) Q_{k}\right)$, and it will be called a Q-multiplicative function.

Simple examples of numeration scales are the q-adic scale, where $Q_{k}=q^{k}, q$ integer, $q \geq 2$, and its generalization, the Cantor scale $Q_{k+1}=q_{k} Q_{k}, Q_{0}=1, q_{k} \geq 2, k \geq 0$.

A classical approach to study properties of Q-multiplicative functions $f(n)$ is to associate to the mean $\frac{1}{x} \sum_{0 \leq n<x} f(n)$ the product

$$
\left.\prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right)
$$

and in fact, this correspondence essentially explains a natural underlying probabilistic structure.

Now, although the q-adic scale and its generalization, the Cantor scale, seem very similar, basic differences may exist between them. More precisely, if a Cantor system is such that there exists some uniform bound B of the q_{k}, there is practically no differences, and this is due essentially to this uniformity condition. Otherwise, if we allow the q_{k} to be unbounded, the situation is not so simple. An example was given in [4], where the case of the mean-value of unimodular Q-multiplicative functions is considered.

§2. Results

In the simple case of non-negative Q-multiplicative functions, the existence of some essential difference can be shown. In fact, we have the following result:

Theorem 1. 1) For a given Cantor scale with uniformly bounded q_{k} and for any non-negative q-multiplicative function f, the condition

$$
\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n<x} f(n) \text { exists and is positive }
$$

is equivalent to the condition

$$
\left.\limsup _{k \rightarrow+\infty} \prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) \text { exists and is positive. }
$$

2) There exist Cantor scales (Q) with not uniformly bounded q_{k} and non-negative Q-multiplicative functions f such that the condition

$$
\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n<x} f(n) \text { exists and is positive }
$$

will not imply the condition

$$
\left.\limsup _{k \rightarrow+\infty} \prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) \text { exists and is positive, }
$$

and non-negative Q-multiplicative functions f such that the condition

$$
\left.\limsup _{k \rightarrow+\infty} \prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) \text { exists and is positive }
$$

will not imply the condition

$$
\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n<x} f(n) \text { exists and is positive. }
$$

In this article, we shall consider the case of non-negative Q - multiplicative functions with a positive upper meanvalue defined via an unbounded Cantor system.

Given an arbitrary arithmetical function f, we set

$$
\begin{aligned}
S_{N}(f) & =\sum_{0 \leq n<N} f(n), \\
\varpi_{k}(f) & =q_{k}^{-1} \sum_{0 \leq n \leq q_{k}-1} f\left(a Q_{k}\right), \\
\prod_{k-}(f) & =\prod_{0 \leq r \leq k-1} \varpi_{k}(f)
\end{aligned}
$$

For our convenience, the result of a summation (resp. a product) on an empty set will be 0 (resp.1).

Now, for a given f of non-negative Q-multiplicative function, we define a sequence of arithmetical functions $f_{k-}(x)$ on Z_{Q} (resp. $\left.f_{k-}^{*}(x)\right)$ by $f_{k-}(x)=\prod_{0 \leq j<k} f\left(a_{j} Q_{r}\right)\left(\right.$ resp. $\left.f_{k-}^{*}(x)=\prod_{0 \leq j<k} f\left(a_{j} Q_{j}\right) . \varpi_{j}(f)^{-1}\right)$, where x being written in base Q as $x=\sum_{j=0}^{+\infty} a_{j} Q_{k}$. For simplicity, we shall also use the notations $f_{j}(x)=f\left(a Q_{j}\right)$ and $f^{*}\left(a Q_{j}\right)=$ $f\left(a Q_{j}\right) . \varpi_{j}(f)^{-1}$.

We denote by Z_{Q} the compact $\operatorname{group} Z_{Q}=\lim _{k \rightarrow+\infty} Z / Q_{k} Z$ equipped with the natural Haar measure μ, and we shall identify it with the compact space $\prod_{k} Z / q_{k} Z$ equipped with the measure $\mu=\otimes_{k} \mu_{q_{k}}$, where $\mu_{q_{k}}$ is the uniform measure on $Z / q_{k} Z$. An element a of Z_{Q} can be written as $a=\left(a_{0}, a_{1}, \ldots\right), 0 \leq a_{k} \leq q_{k}-1,0 \leq k$, and an integer is an element of Z_{Q} which has only a finite number of digits different from zero. For
$a=\left(a_{0}, a_{1}, \ldots\right)$ in Z_{Q}, we denote by $x_{k_{-}}(a)$ the sequence of random variables defined by $x_{k_{-}}(a)=\left\{a_{j}\right\}_{0 \leq j \leq k-1}$, and by $x_{k_{+}}(a)$ the sequence of random variables defined by $x_{k_{+}}(a)=\left\{a_{j}\right\}_{k \leq j}$. We shall use also the notation x_{k} for an integer $x_{k}=\sum_{j=0}^{k-1} a_{j} Q_{k}$ when $x=\sum_{j=0}^{+\infty} a_{j} Q_{k}$.

We have the following result:
Theorem 2. Let (Q) be an unbounded Cantor system, and $f(n)$ be a non-negative Q-multiplicative function such that

$$
\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x-1} f(n)
$$

exists and is positive. Then, there are two possibilities:

1) $\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}$ is bounded, and in this case, for any $r, 0 \leq r \leq 1$, we have μ-almost surely

$$
\begin{array}{r}
\frac{1}{x_{k}} \sum_{0 \leq n \leq x_{k}-1} f(n)^{r}=\left(\prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)^{r}\right) \cdot(1+o(1)) \\
\text { as } x_{k} \rightarrow x
\end{array}
$$

2) $\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}$ is not bounded, and in this case, for any $r, 0<r<1$, we have

$$
\frac{1}{x} \sum_{0 \leq n \leq x-1} f(n)^{r}=o(1), \quad \text { as } x \rightarrow+\infty
$$

§3. Proof of the results

3.1. Proof of Theorem 1

1) We begin with a proof of assertion 1).

Proof. Assume that $S=\lim \sup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n<x} f(n)$ exists and is positive.

Let x_{i} be a sequence such that

$$
\frac{1}{2} S \leq x_{i}^{-1} \sum_{0 \leq n<x_{i}} f(n)
$$

A fortiori, if $\kappa\left(x_{i}\right)$ denotes the maximal index k for which $a_{k}\left(x_{i}\right)$ is different from zero, then we have

$$
\frac{1}{2} S \leq x_{i}^{-1} \sum_{0 \leq n<Q_{\kappa\left(x_{i}\right)+1}} f(n)
$$

and so

$$
\left(\frac{Q_{\kappa\left(x_{i}\right)+1}}{x_{i}}\right)^{-1} \times\left(\frac{1}{2} S\right) \leq\left(\frac{1}{Q_{\kappa\left(x_{i}\right)+1}} \sum_{0 \leq n<Q_{\kappa\left(x_{i}\right)+1}} f(n)\right) .
$$

Since $\left(\frac{Q_{k\left(x_{i}\right)+1}}{x_{i}}\right)^{-1} \geq \frac{1}{\max \left(q_{k}\right)}$ and $\max \left(q_{k}\right)$ is bounded, this gives us that there is some $S^{\prime} \geq \frac{1}{2 \cdot \max \left(q_{k}\right)} S$, hence >0, such that

$$
0<S^{\prime} \leq \limsup _{k \rightarrow+\infty} \frac{1}{Q_{k}} \sum_{0 \leq n \leq Q_{k}-1} f(n)<+\infty
$$

Conversely, if there exists some positive $S^{\prime \prime}$ such that

$$
\limsup _{k \rightarrow+\infty} \frac{1}{Q_{k}} \sum_{0 \leq n \leq Q_{k}-1} f(n)=S^{\prime \prime}<+\infty
$$

then by using the same notations as above, we remark that, since

$$
\sum_{0 \leq n \leq Q_{\kappa(x)}} f(n) \leq \sum_{0 \leq n \leq x} f(n) \leq \sum_{0 \leq n<Q_{\kappa(x)+1}} f(n)
$$

we have

$$
\left(x^{-1} Q_{\kappa(x)}\right)\left(Q_{\kappa(x)}^{-1} \sum_{0 \leq n<Q_{\kappa(x)}} f(n)\right) \leq x^{-1} \sum_{0 \leq n \leq x} f(n)
$$

and

$$
x^{-1} \sum_{0 \leq n \leq x} f(n) \leq\left(x^{-1} Q_{\kappa(x)+1}\right)\left(Q_{\kappa(x)+1}^{-1} \sum_{0 \leq n<Q_{\kappa(x)+1}} f(n)\right)
$$

Hence we get that

$$
0<\frac{1}{\max \left(q_{k}\right)} S^{\prime \prime} \leq \limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n)
$$

for $\left(x^{-1} Q_{\kappa(x)}\right) \geq \frac{1}{\max \left(q_{k}\right)}>0$, and

$$
\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n) \leq \max \left(q_{k}\right) S^{\prime \prime}<+\infty
$$

since

$$
\left(x^{-1} Q_{\kappa(x)+1}\right) \leq \max \left(q_{k}\right)<+\infty
$$

and so

$$
\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n)
$$

exists and its value is positive.
Q.E.D.
2) We prove now assertion 2).

Proof. We consider the following (with indexation shifted for convenience of notations) Q-system, satisfying $\lim \sup \left(q_{k}\right)=+\infty$:

$$
q_{k}=k, k \geq 2
$$

and the Q-multiplicative function f defined by

$$
\begin{aligned}
& f\left(a Q_{k}\right)=1 \text { if } k \neq 2^{r} \text { and } 0 \leq a \leq q_{k}-2, \\
& f\left(\left(q_{k}-1\right) Q_{k}\right)=0 \text { if } k \neq 2^{r} \\
& f\left(Q_{2^{r}}\right)=2^{r}-1, \\
& f\left(a Q_{2^{r}}\right)=0 \text { if } 2 \leq a \leq 2^{r}-1
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left.\prod_{2 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) \\
& =\left(\prod_{2 \leq j \leq k, j \neq 2^{r}} \frac{1}{j}(j-1)\right)\left(\prod_{2 \leq j \leq k, j=2^{r}} \frac{1}{2^{r}}\left(1+\left(2^{r}-1\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\prod_{2 \leq j \leq k, j \neq 2^{r}} \frac{1}{j}(j-1) & =\left(\prod_{2 \leq j \leq k} \frac{1}{j}(j-1)\right)\left(\prod_{2 \leq j \leq k, j=2^{r}} \frac{1}{2^{r}}\left(2^{r}-1\right)\right)^{-1} \\
& =((k-1)!/ k!)\left(\prod_{2 \leq j \leq k, j=2^{r}} \frac{1}{2^{r}}\left(2^{r}-1\right)\right)^{-1} \\
& =\frac{1}{k} \prod_{2 \leq j \leq k, j=2^{r}}\left(1-\frac{1}{2^{r}}\right)^{-1}
\end{aligned}
$$

and so, since $\prod_{2 \leq r}\left(1-\frac{1}{2^{r}}\right)^{-1}$ is convergent, we have

$$
\left.\lim _{k \rightarrow+\infty} \prod_{2 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right)=0
$$

Now, for $x=2 Q_{2^{k}}-1$, we have

$$
\begin{aligned}
& \frac{1}{x+1} \sum_{0 \leq n \leq x} f(n)=\frac{1}{2 Q_{2^{k}}} \sum_{0 \leq n \leq 2 Q_{2^{k}-1}} f(n) \\
& =\left(\frac{1}{2}\left(f\left(0 . Q_{2^{k}}+f\left(1 \cdot Q_{2^{k}}\right)\right)\right) \times\left(\prod_{r=2}^{2^{k}-1} \frac{1}{q_{r}} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)\right. \\
& =\left(\frac{1}{2} 2^{k}\right) \times\left(\frac{1}{2^{k}-1} \prod_{2 \leq r \leq k-1}\left(1-\frac{1}{2^{r}}\right)^{-1}\right) \\
& \geq \frac{1}{2} \\
& >0
\end{aligned}
$$

As a consequence, the condition

$$
0<\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n<x} f(n)<+\infty
$$

will not imply

$$
\left.0<S^{\prime}=\limsup _{k \rightarrow+\infty} \prod_{2 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right)<+\infty
$$

for some S^{\prime}.
In a similar way, it is possible, using the same kind of approach as above, to provide an example of Q-multiplicative function such that the condition

$$
\left.\limsup _{k \rightarrow+\infty} \prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right)<+\infty
$$

will not imply the condition

$$
\limsup _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n<x} f(n)<+\infty
$$

It is sufficient to consider the following (again with indexation shifted for convenience of notations) Q-system, satisfying $\lim \sup \left(q_{k}\right)=+\infty$:

$$
q_{k}=k, k \geq 2
$$

and the Q-multiplicative function f defined by

$$
f\left(a Q_{k}\right)=1 \text { if } k \neq 2^{r}
$$

$$
\begin{aligned}
& f\left(Q_{2^{r}}\right)=2^{r}-1 \\
& f\left(a Q_{2^{r}}\right)=0 \text { if } 2 \leq a \leq 2^{r}-1
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left.\prod_{2 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) \\
& =\left(\prod_{2 \leq j \leq k, j \neq 2^{r}} \frac{1}{j} \sum_{0 \leq a \leq j-1} 1\right)\left(\prod_{2 \leq j \leq k, j=2^{r}} \frac{1}{2^{r}}\left(1+\left(2^{r}-1\right)\right)\right)=1 .
\end{aligned}
$$

Now, for $x=2 Q_{2^{k}}-1$, we have

$$
\begin{aligned}
& \frac{1}{x+1} \sum_{0 \leq n \leq x} f(n)=\frac{1}{2 Q_{2^{k}}} \Sigma_{0 \leq n \leq 2 Q_{2^{k}}-1} f(n) \\
& =\left(\frac{1}{2}\left(f\left(0 . Q_{2^{k}}+f\left(1 . Q_{2^{k}}\right)\right)\right) \times\left(\prod_{r=2}^{2^{k}-1} \frac{1}{q_{r}} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)\right. \\
& =\left(\frac{1}{2} 2^{k}\right) \\
& =2^{k-1}
\end{aligned}
$$

Q.E.D.

3.2. Proof of theorem 2

3.2.1. Method of proof

The method is as follows:
i) We associate to f a Radon measure ν_{f} on Z_{Q}.
ii) We prove that ν_{f} is absolutely continuous with respect to μ if

$$
\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}
$$

is bounded, and orthogonal to μ if

$$
\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}
$$

is not bounded.
Remark that this dichotomy leaves no other eventuality.
iii) We prove part 1) of Theorem 2 in the case $r=1$ as a simple consequence of the absolute continuity of ν_{f}.
iv) We show that to $f^{r}, 0<r<1$, one can associate a Radon measure which is absolutely continuous with respect to μ. As a consequence, with iii), this gives the proof of part 1) of Theorem 2.
v) We prove directly part 2) of Theorem 2.

3.2.2.

We denote by $(a, k(a))$ an arithmetical progression $\left\{a+Q_{k(a)} n\right\}_{n \in N}$, where a is in $N, k(a)$ is a positive integer such that $Q_{k(a)}>a$. Let $I_{a, k(a)}$ be its characteristic function. Remark that $I_{a, k(a)}$ is the restriction to N of the characteristic function, still denoted $I_{a, k(a)}$, of the open subset $O_{(a, k(a))}$ of Z_{Q} defined by $O_{(a, k(a))}=\left(x_{k(a)_{-}}(a), \prod_{k \geq k(a)} Z / q_{k} Z\right)$, and that this function is continuous, which implies that

$$
\lim \frac{1}{x} \sum_{0 \leq n<x} I_{a, k(a)}(n)=\mu\left(O_{(a, k(a))}\right)
$$

i) Radon measure associated to f.

Let $f(n)$ be a nonnegative Q-multiplicative function with a positive bounded upper mean-value $\bar{M}(f)$. Since $\bar{M}(f)$ exists, the series $\sum_{n \in N} f(n) x^{n}$ converges for $|x|<1$ and can be written as

$$
\sum_{n \in N} f(n) x^{n}=\lim _{k \rightarrow+\infty} \sum_{0 \leq n \leq Q_{k}-1} f(n) x^{n}=\prod_{0 \leq k}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right)
$$

Moreover, since $f(n)$ is non-negative for all n in N, as a consequence of a theorem of Hardy and Littlewood ([1], theorem 4), we get that there exists some $L>0$ and a sequence $\left(x_{k}\right)_{k \in N}$ such that $\lim _{k \rightarrow+\infty} x_{k}=1$ and $\lim _{k \rightarrow+\infty}\left(1-x_{k}\right)^{-1} \sum_{n \in N} f(n) x_{k}^{n}=L$.

In fact if not, then,

$$
\lim _{x \rightarrow 1_{-}}(1-x)^{-1} \sum_{n \in N} f(n) x^{n}=0
$$

which implies that the mean value of $f(n)$ is equal to zero, a contradiction with our hypothesis that $f(n)$ has a positive bounded upper mean-value $\bar{M}(f)$.

Now, we remark that

$$
\sum_{n \in N} f(n) I_{a, k(a)}(n) x^{n}=\sum_{n \in N, n \equiv a\left(\bmod Q_{k(a)}\right)} f(n) x^{n}
$$

and, since the function $f_{k(a)}(n)$ defined by $f_{k(a)}(n)=f\left(Q_{k(a)} n\right)$ can be regarded as a Q-multiplicative function for the Cantor system defined
by $q_{k}^{\prime}=q_{k+k(a)}, k \geq 0$, we get that

$$
\begin{aligned}
& \sum_{n \in N} f(n) I_{a, k(a)}(n) x^{n}=\sum_{m \in N} f\left(a+Q_{k(a)} m\right) x^{a+Q_{k(a)} m} \\
& =f(a) x^{a} \sum_{m \in N} f\left(Q_{k(a)} m\right) x^{Q_{k(a)} m} \\
& =f(a) x^{a} \prod_{k \geq k(a)}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right) \\
& =f(a) x^{a}\left(\left(\prod_{0 \leq k \leq k(a)-1}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right)\right)^{-1}\right. \\
& \left.\quad \times\left(\prod_{0 \leq k}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right)\right)\right) \\
& =\left(f(a) x^{a}\left(\prod_{0 \leq k \leq k(a)-1}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right)\right)^{-1}\right) \times\left(\sum_{n \in N} f(n) x^{n}\right) .
\end{aligned}
$$

Since $f(n)$ is non-negative and $f\left(0 . Q_{k}\right)=1$, the function $F_{a, k(a)}(x)$ defined by

$$
F_{a, k(a)}(x)=\left(f(a) x^{a}\left(\prod_{0 \leq k \leq k(a)-1}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right) x^{b Q_{k}}\right)\right)^{-1}\right)
$$

is analytic on a neighborhood of 1 , and as a consequence of the relation

$$
\sum_{n \in N} f(n) x_{k}^{n} \backsim\left(1-x_{k}\right) L \text { as } k \rightarrow+\infty
$$

we get that

$$
\sum_{n \in N} f(n) I_{a, k(a)}(n) x_{k}^{n} \backsim\left(1-x_{k}\right) L F_{a, k(a)}(1) \text { as } k \rightarrow+\infty
$$

i.e.

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty}\left(1-x_{k}\right)^{-1} \sum_{n \in N} f(n) I_{a, k(a)}(n) x_{k}^{n} \\
& =L f(a)\left(\prod_{0 \leq k \leq k(a)-1}\left(\sum_{0 \leq b \leq q_{k}-1} f\left(b Q_{k}\right)\right)^{-1} \text { as } k \rightarrow+\infty .\right.
\end{aligned}
$$

And so, we shall define $\nu_{f}\left(I_{a, k(a)}\right)$ by

$$
\nu_{f}\left(I_{a, k(a)}\right)=f(a)\left(\prod_{0 \leq k \leq k(a)-1}\left(\sum_{0 \leq b \leq q-1} f\left(b q^{k}\right)\right)\right)^{-1}
$$

Now, we check that ν_{f} is a Radon measure. (For the definition, properties of the Radon measures, see [3], ch2, p. 57 et seq.). To do that, we consider the set \mathcal{A} of complex-valued continuous functions defined on Z_{Q} by

$$
\mathcal{A}=\left\{h=\sum_{l_{a} \in L} l_{a} \cdot I_{a, k(a)}, L \text { finite, } l_{a} \text { complex numbers }\right\}
$$

This is an algebra of step functions, and by the Stone-Weierstrass theorem ([2], p. 101, note 1.a), \mathcal{A} is dense with respect to the uniform topology in the set of the complex-valued continuous functions defined on Z_{Q}. If h is in \mathcal{A}, we define $\nu_{f}(h)$ by $\nu_{f}(h)=\sum_{l_{a} \in L} l_{a} \cdot \nu_{f}\left(I_{a, k(a)}\right)$. It is a simple remark that we have

$$
\nu_{f}(h)=L^{-1} \lim _{k \rightarrow+\infty}\left(1-x_{k}\right)^{-1} \sum_{n \in N} f(n) h(n) x_{k}^{n}
$$

Since $\nu_{f}(1)=1$, for a given $\varepsilon>0$, if h and h^{\prime} are in \mathcal{A} and satisfy $\sup _{t \in Z_{Q}}\left|h^{\prime}(t)-h(t)\right| \leq \varepsilon$, then we have $\left|\nu_{f}\left(h^{\prime}-h\right)\right| \leq \varepsilon$, since $\left|\nu_{f}\left(h^{\prime}-h\right)\right| \leq \nu_{f}(1)$. $\sup _{t \in Z_{Q}}\left|h^{\prime}(t)-h(t)\right| \leq 1 . \varepsilon$, and so ν_{f} defines a continuous linear form on the set of the complex-valued continuous functions defined on Z_{Q}. By Riesz representation theorem ([2], p. 129, (11.37)), this gives us that ν_{f} is a positive Radon measure on Z_{Q}.

ii) Characterization of the absolute continuity (resp. orthogonality) of ν_{f} with respect to μ.

For K in N, we have

$$
\begin{aligned}
& 1-f_{K-}(t)^{1 / 2} \prod_{K-}\left(f^{1 / 2}\right)^{-1} \\
& =\sum_{1 \leq k \leq K}\left(f_{(k-1)-}(t)^{1 / 2} \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-1}-f_{k-}(t)^{1 / 2} \prod_{k-}\left(f^{1 / 2}\right)^{-1}\right) \\
& =\sum_{1 \leq k \leq K}\left(f_{(k-1)-}(t)^{1 / 2} \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-1}\right)\left(1-f_{k-1}(t)^{1 / 2} \varpi_{k-1}\left(f^{1 / 2}\right)^{-1}\right)
\end{aligned}
$$

We remark that

$$
\int\left(1-f_{k-1}(t)^{1 / 2} \varpi_{k-1}\left(f^{1 / 2}\right)^{-1}\right) d \mu(t)=0
$$

$$
\begin{aligned}
& \left\{\left(1-f_{k}(t)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)\left(1-f_{l}(t)^{1 / 2} \varpi_{l}\left(f^{1 / 2}\right)^{-1}\right) d \mu(t)\right. \\
& \left\{\begin{array}{l}
=0 \text { if } k \neq l, \text { and } \\
=q_{k}^{-1} \sum_{0 \leq a \leq q_{k}+1-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2} \text { if } k=l
\end{array}\right.
\end{aligned}
$$

As a consequence of these orthogonality relations, we get that

$$
\begin{aligned}
\int & \left(1-f_{K-}(t)^{1 / 2} \Pi_{K-}\left(f^{1 / 2}\right)^{-1}\right)^{2} d \mu(t) \\
= & \sum_{1 \leq k \leq K} \int\left(f_{(k-1)-}(t)^{1 / 2} \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-1}\right)^{2} d \mu(t) \\
& \quad \times \int\left(1-f_{k-1}(t)^{1 / 2} \varpi_{k-1}\left(f^{1 / 2}\right)^{-1}\right)^{2} d \mu(t)
\end{aligned}
$$

Now, since we have

$$
\begin{gathered}
\int\left(f_{(k-1)-}(t)^{1 / 2} \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-1}\right)^{2} d \mu(t) \\
=\prod_{(k-1)-}(f) \times \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-2}
\end{gathered}
$$

we obtain that

$$
\begin{aligned}
& \int\left(1-f_{K-}(t)^{1 / 2} \prod_{K-}\left(f^{1 / 2}\right)^{-1}\right)^{2} d \mu(t) \\
&= \prod_{K-}(f) \times \prod_{K-}\left(f^{1 / 2}\right)^{-2}-1 \\
&= \sum_{1 \leq k \leq K-1}\left(\prod_{(k-1)-}(f) \times \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-2}\right) \\
& \quad \times\left(q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}\right)
\end{aligned}
$$

and if we are in the situation such that $\lim _{k \rightarrow+\infty}\left(\prod_{k-}(f) \times \prod_{k-}\left(f^{1 / 2}\right)^{-2}\right)$ exists and is >0, we get that the series

$$
\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}
$$

is convergent.
Assuming that we are in the case where

$$
\lim _{K \rightarrow+\infty} \Pi_{K-}(f)^{-1} \times \prod_{K_{-}}\left(f^{1 / 2}\right)^{2}=0
$$

we consider the equality

$$
\begin{aligned}
& \prod_{K-}(f) \times \prod_{K-}\left(f^{1 / 2}\right)^{-2}-1 \\
& =\sum_{1 \leq k \leq K-1}\left(\prod_{(k-1)-}(f) \times \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-2}\right) \\
& \quad \times\left(q_{k}^{-1} \sum_{0 \leq a \leq q_{k}+1-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}\right) .
\end{aligned}
$$

We multiply each member of this equality by $\prod_{K_{-}}(f)^{-1} \times \prod_{K_{-}}\left(f^{1 / 2}\right)^{2}$, and we get that

$$
\begin{aligned}
& 1-\prod_{K-}(f)^{-1} \times \prod_{K-}\left(f^{1 / 2}\right)^{2} \\
& =\sum_{1 \leq k \leq K-1} A(K, k) \times\left(q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}\right)
\end{aligned}
$$

where $A(K, k)$ is defined by

$$
A(K, k)=\prod_{(k-1)-}(f) \times \prod_{(k-1)-}\left(f^{1 / 2}\right)^{-2} \times \prod_{K-}(f)^{-1} \times \prod_{K-}\left(f^{1 / 2}\right)^{2}
$$

Now, we remark that if

$$
\lim _{K \rightarrow+\infty} \prod_{K_{-}}(f)^{-1} \times \prod_{K_{-}}\left(f^{1 / 2}\right)^{2}=0
$$

then, for a fixed k, we have

$$
\lim _{K \rightarrow+\infty} A(K, k)=0 .
$$

Since we have

$$
\lim _{K \rightarrow+\infty}\left(1-\prod_{K-}(f)^{-1} \times \prod_{K-}\left(f^{1 / 2}\right)^{2}\right)=1
$$

we get that the series of general term $q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\right.$ $\left.\left(f^{1 / 2}\right)^{-1}\right)^{2}$ is not convergent, i.e.

$$
\limsup _{K \rightarrow+\infty} \sum_{1 \leq k \leq K} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}=+\infty
$$

This proves that the measure ν_{f} is continuous with respect to μ (resp. orthogonal to μ) if and only if the series of general term q_{k}^{-1} $\sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}$ is convergent (resp. divergent).
iii) Part 1) of Theorem 2 in the case $r=1$ is a simple consequence of the absolute continuity of ν_{f}.
Proof. We shall apply to the present situation the method of proof given in [4].

1) First we prove

Lemma 1. There exists a subset F_{∞} of \mathbf{Z}_{Q} such that $\mu\left(F_{\infty}\right)=1$ and for every $x=\left(a_{0}(x), a_{1}(x), \ldots\right)$ in F_{∞}, we have

$$
\lim _{\substack{k \rightarrow+\infty \\ a_{k}(x) \neq 0}} \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)\right)=0 .
$$

2) This is a consequence of the following result:

Lemma 2. There exists a subset F_{∞} of \mathbf{Z}_{Q} such that $\mu\left(F_{\infty}\right)=1$ and for every $x=\left(a_{0}(x), a_{1}(x), \ldots\right)$ in F_{∞}, we have

$$
\lim _{\substack{k \rightarrow+\infty \\ a_{k}(x) \neq 0}} \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}=0
$$

Proof. 2) $\Rightarrow 1$).
We have

$$
\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}=2 .\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)-\left(1-f^{*}\left(a Q_{k}\right)\right)
$$

which gives us that

$$
\left(1-f^{*}\left(a Q_{k}\right)\right)=2 .\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)-\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}
$$

As a consequence, we get that

$$
\begin{aligned}
& \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)\right) \\
= & \sum_{0 \leq a<a_{k}(x)} 2 \cdot\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)-\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

which gives that

$$
\begin{aligned}
& \left|\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)\right)\right| \\
& \leq 2\left|\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)\right|+\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

By the Cauchy inequality, we have

$$
\begin{aligned}
& \left|\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)\right| \leq a_{k}(x)^{1 / 2} \\
& \left(\sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

and so we get that

$$
\begin{aligned}
& \left|\frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)\right)\right| \\
& \leq 2 \cdot\left(\frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}\right)^{1 / 2} \\
& \quad+\frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

Hence we have

$$
\lim _{\substack{k \rightarrow+\infty \\ a_{k}(x) \neq 0}} \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f^{*}\left(a Q_{k}\right)\right)=0 .
$$

Q.E.D.
3) We prove that there exists a subset F_{∞} of \mathbf{Z}_{Q} such that $\mu\left(F_{\infty}\right)=1$ and for every $x=\left(a_{0}(x), a_{1}(x), \ldots\right)$ in F_{∞}, we have

$$
\lim _{\substack{k \rightarrow+\infty \\ a_{k}(x) \neq 0}} \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}=0 .
$$

Proof. Since the series

$$
\sum_{1 \leq k} q_{k}^{-1} \sum_{0 \leq a \leq q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2}
$$

is convergent, let σ_{k} be defined by $\sigma_{k}=\frac{1}{q_{k}} \sum_{a=0}^{q_{k}-1}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\right.$ $\left.\left(f^{1 / 2}\right)^{-1}\right)^{2}$. For x in \mathbf{Z}_{Q}, we write $x=\left(a_{0}(x), a_{1}(x), \ldots\right), 0 \leq a_{k}(x) \leq$
$q_{k}-1,0 \leq k$ and we remark that, on the sequence of the $a_{k}(x)$ different from 0 , one has

$$
\begin{aligned}
& \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2} \\
& \leq \frac{1}{a_{k}(x)} \sum_{0 \leq a<q_{k}}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2} \\
& \leq \frac{q_{k}}{a_{k}(x)} \frac{1}{q_{k}} \sum_{0 \leq a<q_{k}}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2} .
\end{aligned}
$$

Since $\sum_{k} \sigma_{k}<+\infty$, there exists an increasing positive function h tending to infinity as k tends to infinity such that $\sum_{k} \sigma_{k} h(k)<+\infty$ and $\prod_{k=0}^{+\infty}\left(1-\sigma_{k} h(k)\right)>0$. We consider the set $F(h)$ of points x in \mathbf{Z}_{Q} such that for all k, the inequality

$$
\left[q_{k} \sigma_{k} h(k)\right] \leq a_{k}(x) \leq q_{k}-1
$$

holds, where [•] denotes the integer part function. This set $F(h)$ is closed, and its measure $\mu(F(h))$ is equal to

$$
\prod_{k=0}^{+\infty} \frac{1}{q_{k}}\left(q_{k}-\left[q_{k} \sigma_{k} h(k)\right]\right),
$$

and we have

$$
\mu F(h) \geq \prod_{k=0}^{+\infty} \frac{1}{q_{k}}\left(q_{k}-q_{k} \sigma_{k} h(k)\right) .
$$

Now, we remark that this last product can be written as $\prod_{k=0}^{+\infty}(1-$ $\left.\sigma_{k} h(k)\right)$ and so, $\mu F(h) \neq 0$. For an x in $F(h)$, we consider the condition $\left[q_{k} \sigma_{k} h(k)\right] \leq a_{k}(x) \leq q_{k}-1$, for $a_{k}(x) \neq 0$. If $\left[q_{k} \sigma_{k} h(k)\right]$ is not 0 , then we have

$$
\begin{aligned}
\frac{q_{k}}{a_{k}(x)} \sigma_{k} & \leq \frac{q_{k}}{\left[q_{k} \sigma_{k} h(k)\right]} \sigma_{k} \\
& \leq \frac{q_{k} \sigma_{k} h(k)}{\left[q_{k} \sigma_{k} h(k)\right]} \cdot \frac{q_{k}}{q_{k} \sigma_{k} h(k)} \sigma_{k} \leq \frac{q_{k} \sigma_{k} h(k)}{\left[q_{k} \sigma_{k} h(k)\right]} \frac{1}{h(k)} \leq \frac{2}{h(k)}
\end{aligned}
$$

and in this case, we get $\lim _{k \rightarrow+\infty} \frac{q_{k}}{a_{k}(x)} \sigma_{k}=0$. Now the remaining case is that $\left[q_{k} \sigma_{k} h(k)\right]=0$. We have $0 \leq q_{k} \sigma_{k} h(k)<1$, i.e. $q_{k} \sigma_{k}<1 / h(k)$. Hence

$$
\frac{q_{k}}{a_{k}(x)} \sigma_{k} \leq \frac{q_{k}}{1} \sigma_{k} \leq q_{k} \sigma_{k} \leq \frac{1}{h(k)}=o(1), \quad k \rightarrow+\infty .
$$

To obtain the result, we remark that the sequence of functions h_{r} indexed by positive integers r and defined by $h_{r}(n)=h(n)$ if $n>r$ and $h(n) r^{-1}$ otherwise, satisfies the same requirements as h. Now, the sequence of closed sets $F\left(h_{r}\right)$ is increasing with r and $\lim _{r \rightarrow+\infty} \mu\left(F\left(h_{r}\right)\right)=$ 1. This gives that F_{∞}, the union of the $F\left(h_{r}\right)$, is a measurable set of measure 1. Now, if x belongs to F_{∞}, it belongs to some $F\left(h_{r}\right)$ and as a consequence, along the sequence k such that $a_{k}(x) \neq 0$, we have

$$
\begin{aligned}
& \frac{1}{a_{k}(x)} \sum_{0 \leq a<a_{k}(x)}\left(1-f\left(a Q_{k}\right)^{1 / 2} \varpi_{k}\left(f^{1 / 2}\right)^{-1}\right)^{2} \\
& \leq \frac{q_{k}}{a_{k}(x)} \sigma_{k} \\
& \leq q_{k} \sigma_{k} \\
& \leq \frac{2}{h_{r}(k)}=o(1), \quad k \rightarrow+\infty
\end{aligned}
$$

Q.E.D.
4) We shall need the following result:

Lemma 3. There exists a subset E_{∞} of \mathbf{Z}_{Q} such that $\mu\left(E_{\infty}\right)=1$ and for every $x=\left(a_{0}(x), a_{1}(x), \ldots\right)$ in E_{∞} and $\varepsilon>0$, there exists a positive integer $K(x)$ such that for $s \geq r \geq K(x)$, and we have

$$
\left|\left(\prod_{s \geq r \geq K(x)} f\left(a Q_{j}\right) \varpi_{j}(f)^{-1}\right)-1\right| \leq \varepsilon
$$

Proof. We consider the sequence of real-valued functions $f_{(k+1)-}^{*}$ defined on Z_{Q} by $x \longmapsto f_{(k+1)-}^{*}(x)=\prod_{0 \leq j \leq k} f\left(a_{j}(x) Q_{j}\right) \varpi_{j}(f)^{-1}$, $x=\left(a_{0}(x), a_{1}(x), \ldots\right)$. Kakutani's Theorem ([5], p. 109) gives us that $f_{(k+1)-}^{*}(x)$ converges μ-a.s. and in $L^{1}\left(Z_{Q}, d \mu\right)$. Hence we get that $f_{\infty}^{*}(x)=\prod_{0 \leq j} f\left(a_{j}(x) Q_{j}\right) \varpi_{j}(f)^{-1}$ exists μ-a.s. and is in $L^{1}\left(Z_{Q}, d \mu\right)$. Now, as a consequence of Jessen's Theorem [5, p.108],

$$
\lim _{k \rightarrow+\infty} \int f_{\infty}^{*}(x) \underset{0 \leq j \leq k}{\otimes} d \mu_{j}(x)=\int f_{\infty}^{*} d \mu=1 \quad \mu \text {-a.s. }
$$

i.e.

$$
\lim _{k \rightarrow+\infty} \prod_{k \leq j} f\left(a_{j}(x) Q_{j}\right) \varpi_{j}(f)^{-1}=1 \quad \mu \text {-a.s. }
$$

and as a consequence, by Cauchy's criterion, we get our result.
Q.E.D.
5) End of the proof

We consider the intersection of the sets E_{∞} and F_{∞}. We shall prove that, for every ξ in $E_{\infty} \cap F_{\infty}$ which is not an integer, we have
$\frac{1}{x_{k}(\xi)} \sum_{n<x_{k}(\xi)} f(n)=\left(\prod_{0 \leq j \leq k} \frac{1}{q_{j}} \sum_{0 \leq a \leq q_{j}-1} f\left(a Q_{j}\right)\right) .(1+o(1)), \quad$ as $k \rightarrow+\infty$.
Let $\xi=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be an element of $E_{\infty} \cap F_{\infty}$ and abbreviate $x_{k}(\xi)$ by x_{k}. We have:

$$
S_{x_{k}}(f)=\left(\sum_{0 \leq a<a_{k}} f\left(a Q_{k}\right)\right)\left(\prod_{r=0}^{k-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)+\left(f\left(a_{k} Q_{k}\right)\right) S_{x_{k-1}}(f)
$$

and by iteration

$$
\begin{aligned}
& S_{x_{k}}(f)=\sum_{j=0}^{k}\left(\prod_{j+1 \leq r \leq k} f\left(a_{r} Q_{r}\right)\right)\left(\sum_{0 \leq a<a_{j}(\xi)} f\left(a Q_{j}\right)\right)\left(\prod_{r=0}^{j-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right) \\
& =\sum_{j=0}^{k}\left(\prod_{j+1 \leq r \leq k} f\left(a_{r} Q_{r}\right)\right)\left(\sum_{0 \leq a<a_{j}(\xi)} f\left(a Q_{j}\right)\right)\left(\prod_{r=0}^{j-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right) .
\end{aligned}
$$

We remark now that this equality can be written as

$$
\begin{aligned}
& S_{x_{k}}(f)\left(\prod_{r=0}^{k} q_{r}^{-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1} \\
& =\sum_{j=0}^{k}\left[\left(\prod_{j+1 \leq r \leq k} f^{*}\left(a_{r} Q_{r}\right)\right)\left(\sum_{0 \leq a<a_{j}(\xi)} f^{*}\left(a Q_{j}\right)\right)\left(\prod_{r=0}^{j-1} \sum_{a=0}^{q_{r}-1} f^{*}\left(a Q_{r}\right)\right)\right]
\end{aligned}
$$

Since

$$
\sum_{a=0}^{q_{r}-1} f^{*}\left(a Q_{r}\right)=q_{r}
$$

we have

$$
\left(\prod_{r=0}^{j-1} \sum_{a=0}^{q_{r}-1} f^{*}\left(a Q_{r}\right)\right)=\left(\prod_{r=0}^{j-1} q_{r}\right)=Q_{j} .
$$

The choice of ξ in F_{∞} implies that

$$
\sum_{0 \leq a<a_{j}(\xi)} f^{*}\left(a Q_{r}\right)=a_{j}(\xi)\left(1+\varepsilon_{j}\right)
$$

with $\varepsilon_{j}=o(1)$ as j tends to infinity. The choice of ξ in E_{∞} implies that

$$
\prod_{j+1 \leq r \leq k} f^{*}\left(a_{r} Q_{r}\right)=1+\varepsilon_{j}^{\prime},
$$

with $\varepsilon_{j}^{\prime}=o(1)$ as j tends to infinity.
This gives us that

$$
\begin{aligned}
& S_{x_{k}}(f)\left(\prod_{r=0}^{k} q_{r}^{-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1}=\sum_{j=0}^{k} a_{j}(\xi) Q_{j}\left(1+\varepsilon_{j}\right)\left(1+\varepsilon_{j}^{\prime}\right) \\
& \text { as } j \rightarrow+\infty
\end{aligned}
$$

and so, since

$$
\sum_{j=0}^{k} a_{j}(\xi) Q_{j}=x_{k}
$$

we remark that we have

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty}\left(\sum_{j=0}^{k} a_{j}(\xi) Q_{j}\right)^{-1}\left(\sum_{j=0}^{k} a_{j}(\xi) Q_{j}\left(1+\varepsilon_{j}\right)\left(1+\varepsilon_{j}^{\prime}\right)\right) \\
& =\lim _{k \rightarrow+\infty}\left(x_{k}\right)^{-1}\left(\sum_{j=0}^{k} a_{j}(\xi) Q_{j}\left(1+\varepsilon_{j}\right)\left(1+\varepsilon_{j}^{\prime}\right)\right) \\
& =1
\end{aligned}
$$

and as a consequence, we obtain that

$$
S_{x_{k}}(f) x_{k}^{-1}=\left(\prod_{r=0}^{k} q_{r}^{-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)(1+o(1)), \quad \text { as } k \rightarrow+\infty
$$

Q.E.D.
iv) To $f^{r}, 0<r<1$, one can associate a Radon measure absolutely continuous with respect to μ.
By 3) above, this will give the end of the proof of part 1) of Theorem 2.

We consider the sequence of real-valued functions f_{k}^{*} defined on Z_{Q} by $x \longmapsto f_{k-}^{*}(x)=\prod_{0<j<k} f\left(a_{j}(x) Q_{j}\right) \varpi_{j}(f)^{-1}, x=\left(a_{0}(x), a_{1}(x), \ldots\right)$. Kakutani's Theorem ([5], p. 109) gives us that $f_{k-}^{*}(x)$ converges $\mu-a . s$. and in $L^{1}\left(Z_{Q}, d \mu\right)$. As a consequence, we get that. $\left.\left(f_{k-}^{*}(x)\right)\right)^{r}$ converges
$\mu-a . s$. and in $L^{1 / r}\left(Z_{Q}, d \mu\right)$. This implies that

$$
\lim _{K \rightarrow+\infty}\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{r}\left(a Q_{r}\right)\right)\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-r}
$$

exists, and the value is less or equal to 1 , but is not zero.
Hence we get that the sequence of functions

$$
\left(\left(\prod_{r=0}^{k-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{r}\left(a Q_{r}\right)\right)\left(\left(\prod_{r=0}^{k-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-r}\right)^{-1}\left(f_{k-}^{*}(x)\right)^{r}\right.
$$

converges μ-a.s. and in $L^{1 / r}\left(Z_{Q}, d \mu\right)$, i.e.

$$
\left(f_{k-}(x)\right)^{r}\left(\left(\prod_{r=0}^{k-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{r}\left(a Q_{r}\right)\right)\right)^{-1}
$$

converges μ-a.s. and in $L^{1 / r}\left(Z_{Q}, d \mu\right)$.
As a consequence, since $L^{1}\left(Z_{Q}, d \mu\right) \supset L^{1 / r}\left(Z_{Q}, d \mu\right)$, this product defines a measure absolutely continuous with respect to μ.
Q.E.D.
v) We prove directly part 2) of Theorem 2.

1) Assume that $\lim _{k \rightarrow+\infty} \int\left(f_{k-}^{*}\right)^{1 / 2} d \mu=0$. Then, we have

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} S_{x}\left(f^{1 / 2}\right)=0
$$

Proof. If $x=\sum_{k=0}^{K} a_{k} Q_{k}$ and K denotes the maximal index k for which $a_{k}(x)$ is different from zero, we have

$$
a_{K} Q_{K} \leq x \leq\left(a_{K}+1\right) Q_{K}
$$

and so,

$$
\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} \leq x^{-1}
$$

But

$$
\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}=\left(\left(a_{K} Q_{K}\right) \times\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}\right) \times\left(a_{K} Q_{K}\right)^{-1}
$$

and since

$$
\left(a_{K} Q_{K}\right) \times\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}=\left(a_{K}\right) \times\left(a_{K}+1\right)^{-1}
$$

and $a_{K} \geq 1$, we get that

$$
\left(a_{K}\right) \times\left(a_{K}+1\right)^{-1} \geq 1 / 2 .
$$

This implies that

$$
\begin{aligned}
& \left(\left(a_{K}+1\right) Q_{K}\right)^{-1} \\
& =\left(\left(a_{K} Q_{K}\right) \times\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}\right) \times\left(a_{K} Q_{K}\right)^{-1} \geq(1 / 2) \times\left(a_{K} Q_{K}\right)^{-1}
\end{aligned}
$$

and as a consequence, since

$$
\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} \leq x^{-1}
$$

we get that

$$
(1 / 2) \times\left(a_{K} Q_{K}\right)^{-1} \leq x^{-1}
$$

Similarly, since we have $x^{-1} \leq\left(a_{K} Q_{K}\right)^{-1}$, we get that $x^{-1} \leq 2 \times$ $\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}$.

Now, if $g(n)$ is any non-negative Q-multiplicative function, from the inequality

$$
a_{K} Q_{K} \leq x \leq\left(a_{K}+1\right) Q_{K}
$$

we obtain that

$$
S_{a_{K} Q_{K}}(g) \leq S_{x}(g) \leq S_{\left(a_{K}+1\right) Q_{K}}(g)
$$

i.e.

$$
x^{-1} S_{a_{K} Q_{K}}(g) \leq x^{-1} S_{x}(g) \leq x^{-1} S_{\left(a_{K}+1\right) Q_{K}}(g)
$$

and so, using the above inequalities, we get that

$$
(1 / 2) \times\left(\left(a_{K} Q_{K}\right)^{-1} S_{a_{K} Q_{K}}(g)\right) \leq x^{-1} S_{a_{K} Q_{K}}(g) \leq x^{-1} S_{x}(g)
$$

i.e.,

$$
(1 / 2) \times\left(\left(a_{K} Q_{K}\right)^{-1} S_{a_{K} Q_{K}}(g)\right) \leq x^{-1} S_{x}(g)
$$

and similarly,

$$
x^{-1} S_{x}(g) \leq x^{-1} S_{\left(a_{K}+1\right) Q_{K}}(g) \leq 2 \times\left(\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}(g)\right)
$$

i.e.,

$$
x^{-1} S_{x}(g) \leq 2 \times\left(\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}(g)\right)
$$

Replacing g by f, since $\lim \sup _{x \rightarrow+\infty} \frac{1}{x} S_{x}(f)=L>0$, we have, if K is large enough,

$$
S_{a_{K} Q_{K}}(f) \leq 2 L a_{K} Q_{K}
$$

$$
S_{\left(a_{K}+1\right) Q_{K}}(f) \leq 2 L\left(a_{K}+1\right) Q_{K}
$$

Now, replacing g by $f^{1 / 2}$, we have

$$
x^{-1} S_{x}\left(f^{1 / 2}\right) \leq 2 \times\left(\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}\left(f^{1 / 2}\right)\right)
$$

with

$$
S_{\left(a_{K}+1\right) Q_{K}}\left(f^{1 / 2}\right)=\left(\sum_{0 \leq a \leq a_{K}} f^{1 / 2}\left(a Q_{K}\right)\right)\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)
$$

and by Cauchy's inequality, we get that

$$
\begin{aligned}
& S_{\left(a_{K}+1\right) Q_{K}}\left(f^{1 / 2}\right) \\
& \leq\left(\left(a_{K}+1\right)\left(\sum_{0 \leq a \leq a_{K}} f\left(a Q_{K}\right)\right)\right)^{1 / 2}\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right) .
\end{aligned}
$$

This gives us that

$$
\begin{aligned}
x^{-1} S_{x}\left(f^{1 / 2}\right) & \leq 2 \times\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} \\
& \times\left(\left(a_{K}+1\right)\left(\sum_{0 \leq a \leq a_{K}} f\left(a Q_{K}\right)\right)\right)^{1 / 2}\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)
\end{aligned}
$$

and we write the right member of this inequality as

$$
\begin{aligned}
& 2 \times\left(\left(\left(a_{K}+1\right) Q_{K}\right)^{-1}\left(\sum_{0 \leq a \leq a_{K}} f\left(a Q_{K}\right)\right)\right)^{1 / 2}\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right) \\
& \times\left\{\left(\left(Q_{K}\right)^{-1 / 2}\right) \times\left(\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)\left(\left(\prod_{r=0}^{K-1} \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1 / 2}\right)\right\},\right.
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& 2 \times\left[\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}(f)\right]^{1 / 2} \times \\
& {\left[\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1 / 2}\right],}
\end{aligned}
$$

and so we have

$$
x^{-1} S_{x}\left(f^{1 / 2}\right)
$$

$$
\begin{aligned}
\leq & 2 \times\left[\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}(f)\right]^{1 / 2} \\
& \times\left[\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1 / 2}\right] .
\end{aligned}
$$

Since

$$
\left(\left(a_{K}+1\right) Q_{K}\right)^{-1} S_{\left(a_{K}+1\right) Q_{K}}(f) \leq 2 L
$$

and

$$
\begin{aligned}
& \left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f^{1 / 2}\left(a Q_{r}\right)\right)\left(\prod_{r=0}^{K-1}\left(1 / q_{r}\right) \cdot \sum_{a=0}^{q_{r}-1} f\left(a Q_{r}\right)\right)^{-1 / 2} \\
& =o(1), \quad \text { as } K \rightarrow+\infty
\end{aligned}
$$

we get that $\lim _{x \rightarrow+\infty} x^{-1} S_{x}\left(f^{1 / 2}\right)=0$.
Q.E.D.
2) For any r in $] 0,1\left[\right.$, we have $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x} f(n)^{r}=0$.

Proof. Since

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x} f(n)^{1 / 2}=0
$$

we get that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x, f(n)^{1 / 2} \geq 1} f(n)^{1 / 2}=0
$$

i.e.

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x, f(n) \geq 1} f(n)^{1 / 2}=0
$$

and as a consequence

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x, f(n) \geq 1} 1=0
$$

which implies that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{0 \leq n \leq x, f(n) \leq 1} 1=1
$$

If r is in $] 0,1[$, we have

$$
\sum_{0 \leq n \leq x} f(n)^{r}=\sum_{0 \leq n \leq x, f(n) \geq 1} f(n)^{r}+\sum_{0 \leq n \leq x, f(n) \leq 1} f(n)^{r} .
$$

Using Hölder's inequality, we get that

$$
\sum_{0 \leq n \leq x, f(n) \geq 1} f(n)^{r} \leq\left(\sum_{0 \leq n \leq x, f(n) \geq 1} 1\right)^{1-r} \cdot\left(\sum_{0 \leq n \leq x, f(n) \geq 1} f(n)\right)^{r}
$$

Since

$$
\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n)=L
$$

we get that

$$
\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} f(n) \leq L,
$$

and since

$$
\lim _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} 1=0
$$

we obtain that

$$
\begin{aligned}
& \limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} f(n)^{r} \\
& \leq\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} 1\right)^{1-r} \cdot\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} f(n)\right)^{r} \\
& \leq\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} 1\right)^{1-r} \cdot L^{r} \\
& =0 .
\end{aligned}
$$

Now, we remark that as above, we have

$$
\begin{aligned}
& x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)^{r} \\
& \leq\left(x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} 1\right)^{1-r} \cdot\left(x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)\right)^{r}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
& \limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)^{r} \\
& \leq\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} 1\right)^{1-r} \cdot\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)\right)^{r} \\
& \leq 1 .\left(\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)\right)^{r} .
\end{aligned}
$$

But if $0 \leq f(n) \leq 1$, then the inequality $0 \leq f(n) \leq f(n)^{1 / 2}$ holds, and as a consequence, we get that

$$
\sum_{0 \leq n \leq x, f(n) \leq 1} f(n) \leq \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)^{1 / 2}
$$

and a fortiori,

$$
\sum_{0 \leq n \leq x, f(n) \leq 1} f(n) \leq \sum_{0 \leq n \leq x} f(n)^{1 / 2}
$$

Now, since

$$
\lim _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n)^{1 / 2}=0
$$

we get that

$$
\lim _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \leq 1} f(n)=0
$$

and so, we have

$$
\limsup _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x, f(n) \geq 1} f(n)^{r}=0 .
$$

This proves that for any r in $] 0,1[$, we have

$$
\lim _{x \rightarrow+\infty} x^{-1} \sum_{0 \leq n \leq x} f(n)^{r}=0
$$

Q.E.D.

References

[1] G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive, Proc. London Math. Soc. (2), 13, 174-191.
[2] E. Hewitt and K. Ross, Abstract harmonic analysis. I, 1963, SpringerVerlag.
[3] P. Malliavin, Intégration et probabilité, Analyse de Fourier et Analyse spectrale, Masson, Paris, 1982.
[4] J. L. Mauclaire, An almost-sure estimate for the mean of generalized Qmultiplicative functions of modulus 1 , J. Théor. Nombres Bordeaux, 12 (2000), 1-12.
[5] A. Tortrat, Calcul des probabilités, Masson, 1971, Paris.

Jean-Loup Mauclaire
THEORIE DES NOMBRES
Institut de mathématiques, (UMR 75867 du CNRS)
Université Pierre et Marie Curie
175 rue du chevaleret, Plateau 7D
F-75013 Paris
France
E-mail address: mauclai@ccr.jussieu.fr

[^0]: Received May 15, 2006.
 Revised January 23, 2007.
 2000 Mathematics Subject Classification. Primary 11A25; Secondary 11N64, 11N56.

 Key words and phrases. mean-value, Q-multiplicative functions.

