Open Access
VOL. 44 | 2006 Estimates of maximal functions by Hausdorff contents in a metric space
Chapter Author(s) Hisako Watanabe
Editor(s) Hiroaki Aikawa, Takashi Kumagai, Yoshihiro Mizuta, Noriaki Suzuki
Adv. Stud. Pure Math., 2006: 377-389 (2006) DOI: 10.2969/aspm/04410377

Abstract

Let $M$ be the Hardy-Littlewood maximal operator in a quasimetric space $X$. We give the estimates of $Mf$ with weak type and strong type with respect to the $\alpha$-Hausdorff content. To do these, we use the dyadic balls introduced by E. Sawyer and R. L. Wheeden.

Information

Published: 1 January 2006
First available in Project Euclid: 16 December 2018

zbMATH: 1125.42008
MathSciNet: MR2279770

Digital Object Identifier: 10.2969/aspm/04410377

Subjects:
Primary: 31B15 , 42B25

Keywords: Choquet integral , Hausdorff content , homogeneous space , maximal function

Rights: Copyright © 2006 Mathematical Society of Japan

PROCEEDINGS ARTICLE
13 PAGES


Back to Top