Open Access
VOL. 44 | 2006 Harmonic conjugates of parabolic Bergman functions
Chapter Author(s) Masahiro Yamada
Editor(s) Hiroaki Aikawa, Takashi Kumagai, Yoshihiro Mizuta, Noriaki Suzuki
Adv. Stud. Pure Math., 2006: 391-402 (2006) DOI: 10.2969/aspm/04410391

Abstract

The parabolic Bergman space is the Banach space of solutions of some parabolic equations on the upper half space which have finite $L^p$ norms. We introduce and study $L^{(\alpha)}$-harmonic conjugates of parabolic Bergman functions, and give a sufficient condition for a parabolic Bergman space to have unique $L^{(\alpha)}$-harmonic conjugates.

Information

Published: 1 January 2006
First available in Project Euclid: 16 December 2018

zbMATH: 1120.35042
MathSciNet: MR2279771

Digital Object Identifier: 10.2969/aspm/04410391

Subjects:
Primary: ‎32A36‎
Secondary: 26D10 , 35K05

Keywords: Bergman space , harmonic conjugate , heat equation , parabolic equation

Rights: Copyright © 2006 Mathematical Society of Japan

PROCEEDINGS ARTICLE
12 PAGES


Back to Top