Open Access
VOL. 74 | 2017 On isotropic divisors on irreducible symplectic manifolds
Chapter Author(s) Daisuke Matsushita
Editor(s) Keiji Oguiso, Caucher Birkar, Shihoko Ishii, Shigeharu Takayama
Adv. Stud. Pure Math., 2017: 291-312 (2017) DOI: 10.2969/aspm/07410291

Abstract

Let $ X $ be an irreducible symplectic manifold and $ L $ a divisor on $ X $. Assume that $ L $ is isotropic with respect to the Beauville-Bogomolov quadratic form. We define the rational Lagrangian locus and the movable locus on the universal deformation space of the pair $ (X,L) $. We prove that the rational Lagrangian locus is empty or coincides with the movable locus of the universal deformation space.

Information

Published: 1 January 2017
First available in Project Euclid: 23 October 2018

zbMATH: 1392.32009
MathSciNet: MR3791219

Digital Object Identifier: 10.2969/aspm/07410291

Rights: Copyright © 2017 Mathematical Society of Japan

PROCEEDINGS ARTICLE
22 PAGES


Back to Top