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On isotropic divisors on irreducible symplectic
manifolds
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Abstract.

Let X be an irreducible symplectic manifold and L a divisor on
X. Assume that L is isotropic with respect to the Beauville-Bogomolov
quadratic form. We define the rational Lagrangian locus and the mov-
able locus on the universal deformation space of the pair (X,L). We
prove that the rational Lagrangian locus is empty or coincides with the
movable locus of the universal deformation space.

§1. Introduction

We start by recalling the definition of an irreducible symplectic man-
ifold.

Definition 1.1 ([4, Théorèm 1]). Let X be a compact Kähler man-
ifold. The manifold X is said to be irreducible symplectic if X satisfies
the following three properties.

(1) X carries a holomorphic symplectic form.
(2) X is simply connected.
(3) dimH0(X,Ω2

X) = 1.

Together with Calabi-Yau manifolds and complex tori, irreducible
symplectic manifolds form a building block of compact Kähler manifolds
with c1 = 0. It is shown in [21], [20] and [13] that fibre space structures
of irreducible symplectic manifolds are very restricted. To state the
result, we recall the definition of a Lagrangian fibration.

Definition 1.2. Let X be an irreducible symplectic manifold and
L a line bundle on X. A surjective morphism g : X → S is said to be
Lagrangian if a general fibre is connected and Lagrangian. A dominant
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map g : X ��� S is said to be rational Lagrangian if there exist another
irreducible symplectic manifold X ′ and a birational map φ : X ��� X ′

such that the composite map g ◦ φ−1 : X ′ → S is Lagrangian. We say
that L defines a Lagrangian fibration if the linear system |L| defines a
Lagrangian fibration. We also say that L defines a rational Lagrangian
fibration if |L| defines a rational Lagrangian fibration.

Theorem 1.1 ([20], [21] and [13]). Let X be a projective irre-
ducible symplectic manifold. Assume that X admits a surjective mor-
phism g : X → S over a smooth projective manifold S. Assume that
0 < dimS < dimX and g has connected fibres. Then g is Lagrangian
and S ∼= P1/2 dimX .

It is a natural to ask when a line bundle L defines a Lagrangian
fibration. If L defines a rational Lagrangian fibration, then L is isotropic
with respect to the Beauville-Bogomolov quadratic form. Moreover the
first Chern class c1(L) of L belongs to the closure of the birational Kähler
cone which is defined in [12, Definition 4.1].

Conjecture 1.1 (D. Huybrechts and J. Sawon). Let X be an ir-
reducible symplectic manifold and L a line bundle on X. Assume that
L is isotropic with respect to the Beauville-Bogomolov quadratic form
on H2(X,C). We also assume that c1(L) belongs to the closure of the
birational Kähler cone of X. Then L will define a rational Lagrangian
fibration.

At this moment, partial results about Conjecture 1.1 are shown in
[1], [6], [22] and [25]. In this note, we consider the concerning conjecture
by a different approach. To state the result, we recall the basic facts of
deformations of pairs which consists of a symplectic manifold and a line
bundle.

Definition 1.3. Let X be a Kähler manifold and L a line bundle
on X. A deformation of the pair (X,L) consists of a proper smooth
morphism X → S over a smooth manifold S with a reference point o
and a line bundle L on X such that the fibre Xo at o is isomorphic to X
and the restriction L|X0 is isomorphic to L.

If X is an irreducible symplectic manifold, it is known that there
exists the universal deformation of deformations of a pair (X,L).

Proposition 1.1 ([10, (1.14)]). Let X be an irreducible symplectic
manifold and L a line bundle on X. We also let X → Def(X) be the Ku-
ranishi family of X. Then there exists a smooth hypersurface Def(X,L)
of Def(X) such that the restriction family XL := X×Def(X)Def(X,L) →
Def(X,L) forms the universal family of deformations of the pair (X,L).
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Namely, XL carries a line bundle L and every deformation XS → S of
(X,L) is isomorphic to the pull back of (XL,L) via a uniquely determined
map S → Def(X,L).

Now we can state the result.

Theorem 1.2. Let X be an irreducible symplectic manifold and L
a line bundle on X. We also let π : XL → Def(X,L) be the universal
family of deformations of the pair (X,L) and L the universal bundle.
We denote by q the Beauville-Bogomolov form on H2(X,C). Assume
that q(L) = 0. We define the locus of movable Def(X,L)mov by

{t ∈ Def(X,L); c1(Lt) belongs to the closure of the birational Kähler

cone of X.}
We also define two more subsets of Def(X,L). The first is the locus of
rational Lagrangian fibrations V , which is defined by

{t ∈ Def(X,L);Lt defines a rational Lagrangian fibration over projective

space.}
The second is the locus of Lagrangian fibrations Vreg, which is defined by

{t ∈ Def(X,L);Lt defines a Lagrangian fibration over projective space.}
Then V = ∅ or V = Def(X,L)mov. Moreover if V �= ∅, Vreg is a dense
open subset of Def(X,L) and Def(X,L) \ Vreg is contained in a union
of countably hypersurfaces of Def(X,L).

Remark 1.1. Professors L. Kamenova and M. Verbitsky obtained
Vreg is a dense open set of Def(X,L) under the assumption Vreg �= ∅ in
[14, Theorem 3.4].

To state an application of Theorem 1.2, we need the following two
definitions.

Definition 1.4. Two compact Kähler manifolds X and X ′ are said
to be deformation equivalent if there exists a proper smooth morphism
π : X → S over a smooth connected complex manifold S such that both
X and X ′ form fibres of π.

Definition 1.5. An irreducible symplectic manifold X is said to
be of K3[n]-type if X is deformation equivalent to the n-pointed Hilbert
scheme of a K3 surface. An irreducible symplectic manifold X is said
to be generalized Kummer-type if X is deformation equivalent to a gen-
eralized Kummer variety which as defined in [5, Théorèm 4].
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It was shown in [3, Conjecture 1.4, Theorem 1.5 and Remark 11.4] and
[18, Theorem 1.3 and Theorem 6.3] and [26, Proposition 3.36] that if
X is isomorphic to the n-pointed Hilbert scheme of a K3 surface or a
generalized Kummer variety, then Conjecture 1.1 holds. In fact, they
proved that an isotropic line bundle L onX defines a rational Lagrangian
fibration if c1(L) belongs to the closure of the birational Kähler cone and
c1(L) is primitive in H2(X,Z). Combining these results and Theorem
1.2, we obtain the following result.

Corollary 1.1. Let X be an irreducible symplectic manifold of type
K3[n] or of generalized Kummer-type. We also let L be a line bundle
L on X which is not trivial, isotropic with respect to the Beauville-
Bogomolov quadratic form on H2(X,C) and such that c1(L) belongs to
the closure of the birational Kähler cone of X. Then L define a rational
Lagrangian fibration over the projective space.
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§2. Birational correspondence of deformation families

In this section we study a relationship between deformation families.
We start by introducing the following Lemma.

Lemma 2.1 ([10, Lemma 2.6]). Let X and X ′ be irreducible sym-
plectic manifolds. Assume that there exists a bimeromorphic map φ :
X ��� X ′. Then φ induces an isomorphism

φ∗ : H2(X,C) ∼= H2(X ′,C)

which is compatible with the Hodge structures and the Beauville-Bogomolov
quadratic forms.

We consider the relationship between the Kuranishi families of bimero-
morphic irreducible symplectic manifolds.

Proposition 2.1. Let X and X ′ are irreducible symplectic mani-
folds. We denote by π : X → Def(X) the universal family of deforma-
tions of X. We also denote by π′ : X′ → Def(X ′) the universal family of
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deformations of X ′. Assume that X and X ′ are bimeromorphic. Then
there exist dense open subset U of Def(X) and U ′ of Def(X ′) which
satisfy the following three properties.

(1) The set Def(X) \U is contained in a union of countably many
hypersurfaces in Def(X) and Def(X ′) \U ′ is also contained in
a union of countably many hypersurfaces in Def(X ′).

(2) The pull backs of X → Def(X) and X′ → Def(X ′) by the in-
clusions U ↪→ Def(X) and U ′ ↪→ Def(X ′) are isomorphic, that
is, they satisfy the following diagram:

(1) X×Def(X) U
∼=
φ̃

��

��

X′ ×Def(X′) U
′

��
U ∼=

ϕ �� U ′,

where φ̃ and ϕ are isomorphic.
(3) Let s be a point of U and s′ the point ϕ(s). We also let φs :

Xs
∼= X′

s′ be the restriction of the isomorphism φ̃ : X ×Def(X)

U ∼= X′ ×Def(X′) U
′ in the above diagram to the fibre Xs at s

and the fibre X′
s′ at s

′. We denote by η a parallel transport in
the local system R2π∗C along a path from the reference point to
s. We also denote by η′ a parallel transport in the local system
R2π′

∗C along a path from the reference point to s′. Then the
composition of the isomorphisms

H2(X,C)
η∼= H2(Xs,C)

φs∼= H2(X′
s′ ,C)

η′−1

∼= H2(X ′,C)

coincides with φ∗ which is the isomorphism induced by φ :
X ��� X ′.

Proof. The proof of this proposition is a mimic of the proof of
[10, Theorem 5.9]. The proof consists of two steps. First, we show
that there exist open sets U of Def(X) and U ′ of Def(X ′) which satisfy
the the assertions (2) and (3) of Proposition 2.1. Since X and X ′ are
bimeromorphic, we have a deformation XS → S of X and a deforma-
tion X′

S → S of X ′ over a small disk S which are isomorphic to each
other over the punctured disk S \ 0 by [12, Theorem 2.5]. By the uni-
versality, XS → S is isomorphic to the base change X → Def(X) by a
uniquely determined morphism S → Def(X). The family X′

S → S is
also isomorphic to the base change of X′ → Def(X ′) by a uniquely de-
termined morphism S → Def(X ′). Thus there exist points t ∈ Def(X)
and t′ ∈ Def(X ′) such that the fibres Xt and X′

t′ are isomorphic. Let
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η be a parallel transportation of R2π∗C along a path from the refer-
ence point to t and η′ a parallel transportation of R2π′

∗C along a path
from the reference point to t′. Let us consider the composition of the
isomorphisms

(2) H2(X,C)
η∼= H2(Xt,C) ∼= H2(X′

t′ ,C)
η′−1

∼= H2(X ′,C).

By [12, Theorem 2.5], we have a birational map XS ��� X′
S which com-

mutes with the two projections. Moreover the restriction of this map to
the special fibres coincides with φ. Thus the composition of the isomor-
phisms (2) coincides with φ∗. By [4, Théorèm 5 (b)], we can extend the
isomorphism Xt

∼= X′
t′ over open sets of Def(X) and Def(X ′), that is,

there exist open sets U of Def(X) and U ′ of Def(X ′) such that the re-
striction families X×Def(X)U and X′×Def(X′)U

′ are isomorphic and this
isomorphism is compatible with the two projections X → Def(X) and
X′ → Def(X ′). By this construction, the restriction of the isomorphism

φ̃ : X×Def(X) U ∼= X′ ×Def(X′) U
′ to the fibres satisfies the assertion (3)

of Proposition 2.1.
Next we show that U and U ′ satisfies the assertion (1) of Proposition

2.1. Let s be a point of Ū . By [10, Theorem 4.3], the fibres Xs and X′
s are

bimeromorphic. If dimH1,1(Xs,Q) = 0, then Xs and X′
s carries neither

curves nor effective divisors. Thus Xs and X′
s are isomorphic by [12,

Proposition 2.1] and s ∈ U . Thus if s ∈ Ū \U then dimH1,1(Xs,C) ≥ 1.
Since H1,1(Xs,Q) = H2(Xs,Q) ∩H2,0(Xs,C)

⊥, Ū \ U is contained in a
union of countably many hypersurfaces. Q.E.D.

For the proof of Theorem 1.2, we also need a correspondence of
deformation families of pairs. Before we state the assertion, we give a
proof of the following Lemma.

Lemma 2.2. Let X and X ′ be irreducible symplectic manifolds.
Assume that there exists a bimeromophic map φ : X ��� X ′. We
also assume dimH1,1(X,Q) = 1 and q(β) ≥ 0 for every element β
of H1,1(X,Q), where qX is the Beauville-Bogomolov quadratic form on
H2(X,C). Then X and X ′ are isomorphic.

Proof. Since X and X ′ are bimeromorphic, we have an isomor-
phism

φ∗ : H2(X,C) ∼= H2(X ′,C)

by Lemma 2.1. Since φ∗ respects the Beauville-Bogomolov quadratic
forms and the Hodge structures, dimH1,1(X ′,Q) = 1 and H1,1(X ′,Q)
is generated by a class γ ∈ H1,1(X ′,Q) such that qX′(γ) ≥ 0, where qX′

is the Beauville-Bogomolov quadratic form on H2(X ′,C). Let CX and
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CX′ be the positive cones in H1,1(X,R) and H1,1(X ′,R), respectively.
By [10, Corollary 7.2], CX and CX′ coincide with the Kähler cones of X
and X ′, respectively. Since φ∗ maps CX to CX′ , φ∗α is Kähler for every
Kähler class of α ∈ H1,1(X,R). By [7, Corollary 3.3], φ can be extended
to an isomorphism. Q.E.D.

Now we can state a correspondence of deformation families of pairs.

Proposition 2.2. Let X be an irreducible symplectic manifold and
L a line bundle on X. We also let X ′ be an irreducible symplectic
manifold and L′ a line bundle on X ′. We denote the universal family of
deformations of the pair (X,L) by (XL,L) and the parametrizing space
by Def(X,L). We also denote by the universal family of deformations
of the pair (X ′, L′) by (X′

L′ ,L′) and the parameter space by Def(X ′, L′).
Assume that there exists a birational map φ : X ��� X ′ such that φ∗L ∼=
L′ and qX(L) ≥ 0, where qX is the Beauville-Bogomolov quadratic form
on H2(X,C). Then we have the following.

(1) There exist open subsets UL of Def(X,L) and U ′
L′ of Def(X ′, L′)

such that they satisfy the following diagram

XL ×Def(X,L) UL

∼= ��

��

X′
L′ ×Def(X′,L′) U

′
L′

��
UL ∼=

ϕ �� U ′
L′

,

where ϕ is the isomorphism in the diagram of the assertion
(2) of Proposition 2.1. Moreover Def(X,L) \ UL is contained
in a union of countably many hypersurfaces of Def(X,L) and
Def(X,L)\U ′

L′ is also contained in a union of countably many
hypersurfaces of Def(X,L).

(2) For every point s ∈ UL, (φs)∗Ls
∼= L′

s′ , where s′ = ϕ(s) and
φs is the restriction of the isomorphism XL ×Def(X,L) UL →
X′

L′ ×Def(X′,L′) U
′
L′ to the fibres XL,s and X′

L′,s′ .

Proof. We use the same notation in the statements and the proof
of Proposition 2.1. If U ∩ Def(X,L) �= ∅, then UL := U ∩ Def(X,L)
and U ′

L′ := U ′ ∩ Def(X ′, L′) satisfies the assertion (1) and every point
s ∈ UL satisfies the assertion of (2) because the restricted isomorphism
satisfies the assertion (3) of Proposition 2.1. In order to show that U ∩
Def(X,L) �= ∅, let s be a point of Def(X,L) such that dimH1,1(Xs,Q) =
1, where Xs is the fibre at s. We note that dimH1,1(Xs,Q) ≥ 1 for every
point s ∈ Def(X,L). Since H1,1(Xs,Q) = H2(Xs,Q) ∩ H2,0(Xs,C)

⊥,
dimH1,1(Xs,Q) = 1 for a very general point s of Def(X,L). We will
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prove that s ∈ U . Since U is dense and open, there exists a small disk
S of Def(X) such that s ∈ S and S \ {s} ⊂ U . We denote ϕ(s) by s′

and ϕ(S) by S′. If we consider the base changes X → Def(X) by S and
X′ → Def(X ′) by S′, we obtain the following diagram:

XS\{s}

��

∼= �� X′
S′\{s′}

��
S \ s ϕ

∼=
�� S′ \ {s′},

By [10, Theorem 4.3], there exists a birational map Xs ��� X′
s′ . By the

definition of the Beauville-Bogomolov quadratic form [4, Page 772], the
function

Def(X,L) � s �→ qXs(Ls) ∈ Z

is constant, where qXs stands for the Beauville-Bogomolov quadratic
form on H2(Xs,C). Thus we have qX(L) = qXs(Ls) ≥ 0. By Lemma
2.2, φs is an isomorphism and we obtain the following diagram:

XS

��

∼= �� X′
S′

��
S

ϕ

∼=
�� S′.

By the local Torelli theorem [4, Théorèm 5 (b)], there exist an open set
US of S in Def(X) and an open set U ′

S′ of S′ in Def(X ′) such that the
restriction of X over US which satisfy the following diagram:

X×Def(X) US

��

∼= �� X′ ×Def(X′) US′

��
US ∼=

�� US′ .

Since X → Def(X) and X′ → Def(X ′) are locally universal, the isomor-
phism in the above diagram coincides with ϕ in the diagram (1). Thus
US ⊂ U and we have s ∈ U . Q.E.D.

§3. Proof of Theorem

We start with giving a numerical criterion of existence of Lagrangian
fibrations.
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Lemma 3.1. Let X be an irreducible symplectic manifold and L a
line bundle on X. The linear system |L| defines a Lagrangian fibration
over the projective space if and only if L is nef and L has the following
property:

(3) dimH0(X,L⊗k) = dimH0(P1/2 dimX ,O(k))

for every positive integer k.

Proof. If |L| defines a Lagrangian fibration over the projective
space, it is trivial that L is nef and the dimension of global sections
of L⊗k satisfies the equation (3) by Definition 1.2. Thus we prove that
|L| defines a Lagrangian fibration under the assumption that L is nef and
dimH0(X,L⊗k) satisfy the equation (3). By the assumption, the linear
system |L| defines a rational map X ��� P1/2 dimX . Let ν : Y → X
be a resolution of indeterminacy and g : Y → P1/2 dimX is the induced
morphism. Comparing ν∗L and g∗O(1), we have

ν∗L ∼= g∗O(1) + F,

where F is an effective ν-exceptional divisor. By taking k-th multiples
on both sides, we have

kν∗L ∼= g∗O(k) + kF.

If F �= 0, then the above isomorphism and the equality (3) imply that
L is not semiample. By the assumption, L is nef. If LdimX �= 0, then L
is also big and dimH0(X,L⊗k) does not satisfy the equation (3). Thus
LdimX = 0. By [8, Theorem 4.7], we obtain

cXqX(kL+ α)1/2 dimX = (kL+ α)dimX ,

where qX is the Beauville-Bogomolov quadratic form on H2(X,C), cX
is the positive constant of X and α is a Kähler class of H1,1(X,C).
Comparing the degrees of both hand sides of the above equation, we ob-
tain that the numerical Kodaira dimension ν(L) is (1/2) dimX. By the
equation (3), the Kodaira dimension κ(L) is also equal to (1/2) dimX.
Since KX is trivial, the equality ν(L) = κ(L) implies that L is semi-
ample by [15, Theorem 6.1] and [9, Theorem 1.1]. Thus F = 0 and the
linear system |L| defines the morphism f : X → P1/2 dimX . The linear
system |lL| defines a morphism

fl : X → Proj⊕m≥0 H
0(X,L⊗ml) ∼= P

⎛
⎝n+ l

n

⎞
⎠−1

.
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This morphism has connected fibres if l is sufficiently large. The mor-
phism

Proj⊕m≥0 H
0(X,L⊗m) → Proj⊕m≥0 H

0(X,L⊗ml)

is the l-th Veronese embedding. Thus fl is the composition of f and the
Veronese embedding. This implies that f has connected fibres. Q.E.D.

We introduce a criterion which asserts local freeness of direct images
of line bundles.

Lemma 3.2. Let π : XS → S be a smooth morphism over a small
disk S with the reference point o. We also let LS be a line bundle on
XS. Assume that XS and LS satisfy the following conditions.

(1) The canonical bundle of every fibre is trivial.
(2) For every point t of S \ {o}, the restriction LS,t of LS to the

fibre XS,t at t is semiample.
(3) The restriction LS,o of LS to the fibre XS,o at o is nef.

Then the higher direct images Rqπ∗L⊗k
S are locally free for all q ≥ 0 and

k ≥ 1. Moreover the morphisms

(4) Rqπ∗L⊗k
S ⊗ k(o) → Hq(XS,o,LS,o)

are isomorphic for all q ≥ 0 and k ≥ 1.

Proof. The first part is a special case of [24, Corollary 3.14]. By the

criteria of cohomological flatness in [2, page 134], if Rqπ∗L⊗k
S is locally

free and the morphism (4) is isomorphic, then the morphism

Rq−1π∗L⊗k
S ⊗ k(o) → Hq−1(XS,o,LS,o)

is also isomorphic for every k ≥ 1. If q ≥ dimXS,s + 1, the both hand
sides of the morphism (4) are zero. By a reverse induction, we obtain
the last part of the assertions of Lemma 3.2. Q.E.D.

We need one more lemma to prove Theorem 1.2.

Lemma 3.3. Let X be an irreducible symplectic manifold. We let
also L be a line bundle such that qX(L) = 0, where qX is the Beauville-
Bogomolov quadratic form on H2(X,C). Assume that X is not projec-
tive. Then −L or L is nef.

Proof. We may assume that L is belong to the closure of the pos-
itive cone in H2(X,C). If L is not nef, there exists a line bundle M
on X such that qX(M,L) < 0 and qX(M,α) ≥ 0 for all Kähler class
α ∈ H2(X,C) by [10, Theorem 7.1]. If we choose a suitable rational
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number λ, we have qX(L+ λM) > 0. This implies that X is projective
by [11, Theorem 2]. That is a contradiction. Q.E.D.

Now we prove that if Vreg �= ∅ then Vreg is a dense open subset of
Def(X,L).

Lemma 3.4. We use the same notation as in Theorem 1.2. If
Vreg �= ∅, Vreg is dense and open in Def(X,L). Moreover Def(X,L)\Vreg

is contained in a countable union of hypersurfaces of Def(X,L).

Proof. Let t be a point of Vreg and we denote by Xt the fibre at t
and by Lt the restriction of L to Xt. First we prove that Vreg is open.
By the definition of Vreg in Theorem 1.2, the linear system |Lt| defines a
Lagrangian fibration ft : Xt → P1/2 dimXt . By [19, Corollary 1.3], there
exists a neighbourhood U ′ of t such that L is π-free over U ′, where π
is the projection X → Def(X,L). By [19, Theorem 1.2], there exists an
open neighbourhood Ui of t such that Riπ∗L is locally free on Ui. Let
s be a point of U ′ ∩ (∩iUi), Xs the fibre of π at s and Ls the restriction
of L to Xs. By the same argument of the proof of Lemma 3.2, a natural
morphism

π∗L⊗ k(s) → H0(Xs,Ls)

is bijective. Hence U ′ ∩ (∩iUi) ⊂ Vreg. Since Riπ∗L = 0 for i > dimXt,
Ui = Def(X,L) for i > dimXt. This implies that Vreg is open. Next we
prove that Def(X,L)\Vreg is contained in a union of countable hypersur-
faces of Def(X,L). Since a union of real codimension two subsets cannot
separate two non-empty open subsets, this implies that Vreg is dense. Let
t′ be a point of the closure of Vreg such that dimH1,1(Xt′ ,Q) = 1, where
Xt′ is the fibre at t′. We aim to prove that t′ ∈ Vreg. We denote by Lt′

the restriction of L to Xt′ . By the definition of the Beauville-Bogomolov
quadratic form in [4, page 772], the function

Def(X,L) � t �→ qXt(Lt) ∈ Z

is a constant function, where qXt is the Beauville-Bogomolov quadratic
form onH2(Xt,C). Thus qXt′ (Lt′) = 0. SinceH1,1(Xt′ ,Q) is spanned by
Lt′ , Xt′ is not projective by [11, Theorem 2]. Thus Lt′ is nef by Lemma
3.3. We choose a small disk S in Def(X,L) such that t′ ∈ S and S\{t′} ⊂
Vreg. We also consider the restricted family πS : XL ×Def(X,L) S → S.

Then L⊗k
t” is free for every point t” of S \ {t′} and k ≥ 1, where Lt” is

the restriction of L to the fibre Xt” at t”. By Lemma 3.2, (πS)∗L⊗k is
locally free and the morphism

(πS)∗L⊗k ⊗ k(t′) → H0(Xt′ ,L
⊗k
t′ )
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is bijective for every k ≥ 1. By Lemma 3.1, t′ ∈ Vreg. Let W be the
subset of Def(X,L) defined by

W := {t ∈ Def(X,L); dimH1,1(Xt,Q) ≥ 2}.
By the above argument, Def(X,L) \Vreg ⊂ W . Let ωXt be a symplectic
form on Xt. Since H1,1(Xt,Q) = H2(Xt,Q) ∩H2,0(Xt,C)

⊥, W is con-
tained in a union of countable hypersurfaces of Def(X,L) and we are
done. Q.E.D.

We give a proof of Theorem 1.2.

Proof of Theorem 1.2. The proof consists of three parts. We start
by proving the following Claim.

Claim 3.1. If V �= ∅, then Vreg �= ∅.
Proof. We may assume that the reference point o of Def(X,L)

is contained in V . By Definition 1.2, there exists a birational map
φ : X ��� X ′ such that the linear system |φ∗L| defines a Lagrangian
fibration X ′ → P1/2 dimX . Let L′ := φ∗L and (X′

L′ ,L′) be the univer-
sal family of deformations of the pair (X ′, L′). Let V ′

reg be the locus
of Lagrangian fibration of Def(X ′, L′). Then the reference point o′ of
Def(X ′, L′) is contained in V ′

reg. By Lemma 3.4, V ′
reg is a dense open set

of Def(X ′, L′). By Proposition 2.2, we also have dense open sets U ′
L′ of

Def(X ′, L′) and UL of Def(X,L) which satisfy the following diagram:

XL ×Def(X,L) UL

∼= ��

��

X′
L′ ×Def(X′,L′) UL′

��
UL ∼=

ϕ �� U ′
L′

By the assertion (2) of Proposition 2.2, ϕ−1(U ′
L′ ∩ V ′

reg) ⊂ Vreg. Since
U ′
L′ ∩ V ′

reg �= ∅, we obtain Vreg �= ∅. Q.E.D.

By Claim 3.1 and Lemma 3.4, Def(X,L) coincides with the closure of
Vreg under the assumption that V �= ∅.

Claim 3.2. Assume that the reference point o of Def(X,L) is con-
tained in the closure of Vreg and L is nef. Then o ∈ Vreg.

Proof. By the assumption that o ∈ V reg, we choose a small disk S
in Def(X,L) which has the following properties:

(1) o ∈ S.
(2) S \ {o} ⊂ Vreg.
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Let πS : XL ×De(X,L) S → S be the restriction family and LS the
restriction of the universal bundle L to XL ×Def(X,L) S. Then πS :
XL ×Def(X,L) S → S and LS satisfy the all assumptions of Lemma 3.2.

Hense π∗L⊗k
S are locally free and the morphisms

π∗L⊗k
S ⊗ k(s) → H0(Xs,L

⊗k
s )

are isomorphic for all k ≥ 0 and all points s ∈ S. Let s be a point of
S \ {o}. Since s is contained in Vreg,

dimH0(Xs,L
⊗k
s ) = dimH0(P1/2 dimX ,O(k))

for all k ≥ 0 by Lemma 3.1. This implies that

dimH0(X,L⊗k) = dimH0(P1/2 dimX ,O(k)),

for all k ≥ 0. Hence the pair (X,L) satisfies the all assumptions of
Lemma 3.1 and we obtain o ∈ Vreg. Q.E.D.

Claim 3.3. Assume that the reference point o of Def(X,L) is con-
tained in the closure of Vreg, c1(L) belongs to the closure of the birational
Kähler cone and L is not nef. Then o ∈ V .

Proof. We remark that X is projective by Lemma 3.3. We consider
the same restriction family π : XL×Def(X,L)S → S in the proof of Claim
3.2. By the upper semicontinuity of the function

s ∈ S �→ dimH0(Xs,Ls),

Lo = L is effective. By [23, Theorem 1.2], there exists another irreducible
symplectic manifold X ′ and a birational map φ : X ��� X ′ such that L′

is nef, where L′ = φ∗L. By Proposition 2.2, we have dense open sets U ′
L′

of Def(X ′, L′) and UL of Def(X,L) which satisfy the following diagram:

XL ×Def(X,L) UL

∼= ��

��

X′
L′ ×Def(X′,L′) UL′

��
UL ∼=

ϕ �� U ′
L′

Let V ′
reg be the locus of Lagrangian fibrations of Def(X ′, L′). Then

V ′
reg �= ∅ because the image ϕ(Vreg∩UL) is contained in V ′

reg by Proposi-
tion 2.2 (2). By Lemma 3.4, V ′

reg is dense. Hence the reference point o′

of Def(X ′, L′) is contained in the closure of V ′
reg. By Claim 3.2, o′ ∈ V ′

reg.
This implies that o ∈ V . Q.E.D.
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We finish the proof of Theorem 1.2. If V �= ∅, Vreg is open and
dense in Def(X,L) by Claim 3.1. Thus every point s of Def(X,L)mov is
contained in the closure of Vreg. Then s ∈ V by Claim 3.3 and we are
done. Q.E.D.

Proof of Corollary 1.1. We use the same notation of Theorem 1.2
and Corollary 1.1. We also define the subset Λ of Def(X) by

Λ := {s ∈ Def(X); Xs is isomorphic to the n-pointed Hilbert scheme

of K3 or a generalized Kummer variety }
First we will prove the following.

Lemma 3.5. Let X be the n-pointed Hilbert scheme of a K3 surface
or a generalized Kummer variety and L an isotropic line bundle on X. If
c1(L) belongs to the closure of the birational Kähler cone, then L defines
a Lagrangian fibration.

Proof. We first assume that X is the n-pointed Hilbert scheme of
a K3 surface S. We may assume that c1(L) is primitive in H2(X,Z). If
S is projective, X is also projective and the assertion of Lemma is a part
of [3, Conjecture 1.4, Theorem 1.5 and Remark 11.4] or [18, Theorem
1.3 and Theorem 6.3]. Thus we assume that S is not projective. By
[4, Proposition 6 and Remarque], we have an injection ı : H2(S,C) →
H2(X,C) such that

H2(X,Z) ∼= ı(H2(S,Z))⊕ Zδ,

where δ is the half of the cohomology class of the exceptional divisor of
the Hilbert-Chow morphism S[n] → S(n). Thus c1(L) is represented by

c1(L) = aι(c1(LS)) + bδ,

where LS is a line bundle on S. Since S is not projective, L2
S ≤ 0. We

have qX(δ2) = −2(n − 1), qX(ι(c1(LS)), δ) = 0 and qX(L) = 0 where
qX is the Beauville-Bogomolov quadratic form. Thus we have b = 0
and L2

S = 0. Since c1(L) is primitive in H2(X,Z), we have a = 1 and
c1(LS) is primitive in H2(S,Z). By Lemma 3.3, LS is nef. Hence S
admits an elliptic fibration induced by the linear system of |LS |. This
implies that X admits a Lagrangian fibration which is induced by the
linear system |L|. Next we assume that X is isomorphic to a generalizd
Kummer variety associated with a complex two-dimensional torus A in
[4, Théorème 4]. If A is projective, the assertion of Lemma is a part of
[26, Proposition 3.36]. If A is not projective, we obtain the assertion of
Lemma by the same argument in the case that X is isomorphic to the
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n-pointed Hilbert scheme of a non-projective K3 surface if we replace
[4, Proposition 6] by [4, Proposition 8]. Q.E.D.

Assume that Λ ∩ Def(X,L)mov �= ∅. For a point s ∈ Λ ∩ Def(X,L)mov,
we let Ls the restriction of the universal bundle L to the fibre Xs at
s. Then Ls defines a rational Lagrangian fibration by Lemma 3.5, and
consequently, Theorem 1.2 implies the claim.

Next we will prove the following Lemma.

Lemma 3.6. The set Λ ∩Def(X,L) is dense in Def(X,L).

Proof. Let pX : Def(X) → PH2(X,C) be the period map and ΩX

the period domain defined by

ΩX := {α ∈ PH2(X,C); qX(α) = 0, qX(α+ ᾱ) > 0},
where qX is the Beauville-Bogomolov quadratic form. We need the fol-
lowing claim.

Claim 3.4. (1) The preimage of ΩX ∩ c1(L)
⊥ via pX is con-

tained in Def(X,L).
(2) For t ∈ Λ, there exists an element δt ∈ H2(Xt,Z)∩H1,1(Xt,C)

and an isomorphism u∗
t : H2(X,C) → H2(Xt,C) which re-

spects the Beauville-Bogomolov quadratic forms such that the
preimage of ΩX ∩ (u∗

t )
−1(δ⊥t ) via pX is contained in Λ.

Proof. (1) This is a part of [4, Corollarie 1].
(2) The proof consists of four steps. From the first step to the third
step, we assume that X is of K3[n]-type.
Step 1. We define an element δt and an isomorphism u∗

t . By the
definition of Λ, there exists a K3 surface S such that Xt

∼= S[n]. By [4,
Proposition 6], we have an injection

(5) H2(S,C) → H2(Xt,C).

which respects the Hodge structures. Moreover the image of the above
injection coincides with (δt)

⊥ where δt is the half of the cohomology class
of the exceptional divisor of the Hilbert-Chow morphism S[n] → S(n).
Since X → Def(X) is smooth, we have a diffeomorphism

(6) u : X ×Def(X) → X

which is compatible with the projections. We denote by ut the restric-
tion of this diffeomorphism to the fibres at t. Then ut induces the
isomorphism

u∗
t : H2(X,C) → H2(Xt,C)
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Step 2. We give a relationship between Def(X) and Def(Xt). Let us
consider the diffeomorphism

Xt ×Def(X)
u−1
t ×id→ X ×Def(X) → X.

For each point s of Def(X), we have a diffeomorphism u′
s : Xt → Xs

which is the restriction of the above diffeomorphism to the fibres at
s. The pull back of (u′

s)
∗H2,0(Xs,C) gives the period map Def(X) →

PH2(Xt,C) which satisfies the following diagram:

PH2(X,C)

u∗
t

��

Def(X)

pX

������������

p′
����

���
���

��

PH2(Xt,C)

Let ΩXt be the period domain defined by

ΩXt := {α ∈ PH2(Xt,C); qXt(α) = 0, qXt(α+ ᾱ) > 0}.
Since u∗

t respects the Beauville-Bogomolov quadratic forms, u∗
t defines

an isomorphism between ΩX and ΩXt . Then p′ is also locally isomorphic,
because pX is locally isomorphic, This implies that X → Def(X) is a
universal family of local deformations of Xt with the reference point t
by [16, (5.7) Corollary]. Hence we have an isomorphism vt : Def(X) →
Def(Xt) such that the pull back of the Kuranishi family of Xt via vt is
isomorphic to X. Let pXt be the period map Def(Xt) → ΩXt . Since
pXt ◦ vt = p′, vt satisfies the following diagram:

Def(X)

pX

��

vt �� Def(Xt)

pXt

��
PH2(X,C)

u∗
t

�� PH2(Xt,C),

Step 3. We prove that u∗
t and δt have the properties in the assertion

of Claim. By [8, Theorem 4.7], the cup products and the (1/2 dimX)-
th power of the Beauville-Bogomolov quadratic form are proportional.
Since u∗

t respects the cup products, u∗
t respects also the Beauville-

Bogomolov quadratic forms. Let S be the Kuranishi family of Def(S).
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We also let S[n] be a crepant resolution of the relative symmetric n-
th product S(n). By [4, Proposition 10], there exists an injection j :
Def(S) → Def(Xt) such that the pull back of the Kuranishi family of
Xt by j is isomorphic to S[n]. Thus the image of Def(S) by (vt)

−1 ◦ j
is contained in Λ. By [4, Proposition 10], the image of pXt ◦ j coincides
with ΩXt ∩ δ⊥t . This implies that the preimage of Ω ∩ (u∗

t )
−1(δ⊥t ) is

contained in Λ.
Step 4. We consider the case thatX is of generalized Kummer-type. By
[4, Page 781, The second paragraph], [4, Lemma 1] and [4, Proposition
10] hold for a complex two-dimensional torus A and a generalized Kum-
mer variety associated with A. Thus if we replace [4, Proposition 6] by
[4, Proposition 8] and δt by F in [4, Proposition 8], the same argument
works in the case that X is of generalized Kummer-type. Q.E.D.

We go back to the proof of Lemma 3.6. Let t0 be a point of
Def(X,L). The subset Λ is dense in Def(X) by [17, Theorem 1.1
and Theorem 4.1]. Thus there exists a sequence tm ∈ Λ such that
limm→∞ tm = t0. By perturbing the sequence {pX(tm)}, we will con-
struct a sequence of points {t′m} of ΩX which has the following three
properties:

(1) limm→∞ t′m = pX(t0).
(2) t′m ∈ ΩX ∩ c1(L)

⊥ for m � 0.
(3) t′m ∈ ΩX ∩ (u∗

m)−1(δ⊥m) for m � 0, where u∗
m and δm are the

same objects in Claim 3.4 for Xtm .

Let G+
2 be the set of oriented two-dimensional subspaces of H2(X,R)

on which the restriction of qX is positive definite. To construct the
sequence, we need a bijection between ΩX and G+

2 . For a point t ∈
ΩX , we denote by [t] an element of H2(X,C) such that C[t] defines
the line corresponding to the point t ∈ PH2(X,C). The subspace of
H2(X,R) spanned by Re[t] and Im[t] gives an element of G+

2 . On the
contrary, for an element T of G+

2 , we have an oriented orthogonal basis
{ω1, ω2} and the line spanned by ω1 +

√−1ω2 gives a point of ΩX . Let
Tm, (m ≥ 0) be the oriented two dimensional linear subspace H2(X,R)
corresponding to pX(tm), (m ≥ 0). We fix a base {p0, q0} of T0 and
choose a sequence of bases{pm, qm} of Tm such that limm→∞ pm = p0
and limm→∞ qm = q0. We fix an element α ∈ H2(X,Z) such that
qX(α, c1(L)) �= 0. For sequences {pm, qm}, {δm} and {u∗

m} we define
the following five sequences:

(1) λm = qX(pm, c1(L))/qX(α, c1(L)).
(2) μm = qX(qm, c1(L))/qX(α, c1(L)).
(3) γm = qX(α, δm).
(4) am = qX(p0, ((u

∗
m)−1(δm))).
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(5) bm = qX(q0, ((u
∗
m)−1(δm))).

We may assume that the vectors (λm, μm) and (am, bm) are linearly inde-
pendent after perturbing {pm, qm} if necessary. We define two sequences
{rm} and {sm} as follows:

(7) γm
λmrm + μmsm
amrm + bmsm

≥ 0

Let T ′
m be the linear subspace spanned by the following two elements:{

e1 := pm − λmα+ λmγm

amrm+bmsm
(rmp0 + smq0),

e2 := qm − μmα+ μmγm

amrm+bmsm
(rmp0 + smq0),

Since t0 ∈ Def(X,L), T0 ⊂ c1(L)
⊥. Moreover Tm ⊂ (u∗

m)−1(δ⊥m) be-
cause δm ∈ H2(Xtm ,Z) ∩ H1,1(Xtm ,C) and Tm corresponds to the pe-
riod point pX(tm). Hence T ′

m ⊂ c1(L)
⊥ ∩ δ⊥m. Since limm→∞ pm = p0

and limm→∞ qm = q0, limm→∞ λm = limm→∞ μm = 0. This implies
that limm→∞ T ′

m ⊂ T0. We show that dimT ′
m = 2 for m � 0. Let us

consider the following two elements:{
f1 := p0 +

λmγm

rmam+smbm
(rmp0 + smq0),

f2 := q0 +
μmγm

rmam+smbm
(rmp0 + smq0),

.

The above elements are linearly independent if and only if the determi-
nant of (

1 + λmγmrm
rmam+smbm

λmγmsm
rmam+smbm

μmγmrm
rmam+smbm

1 + μmγmsm
rmam+smbm

)

is not zero. The determinant of the above matrix is equal to

1 + γm
λmrm + μmsm
amrm + bmsm

.

This is greater than 1 by the inequality (7). Thus f1 and f2 are linearly
independent in H2(X,R). By the direct calculation, we have{

e1 − f1 = pm − p0 − λmα

e2 − f2 = qm − q0 − μmα
.

Since limm→∞ pm = p0, limm→∞ qm = q0 and limm→∞ λm = limm→∞
μm = 0, these differences are arbitrary small for m � 0. This implies
that dimT ′

m = 2 for m � 0. Therefore we have limm→∞ T ′
m = T0.

Since the restriction of qX on T0 is positive definite, the restriction of
qX on T ′

m is also positive definite for m � 0. Let t′m be the period
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point corresponding to T ′
m. Since T ′

m ⊂ c1(L)
⊥ ∩ (u∗

m)−1(δ⊥m) and T0

corresponds to pX(t0), the sequence {t′m} has the properties (1), (2) and
(3).

Since limm→∞ t′m = t0, t
′
m is contained in the image of pX for m �

0. By Claim 3.4, the sequence of the preimage of {t′m} via pX gives a
sequence of points of Λ ∩Def(X,L) which converge at t0. Q.E.D.

Finally we will prove the following Lemma.

Lemma 3.7. Under the same assumptions and notation of Theorem
1.2, the closure of Def(X,L) \Def(X,L)mov is a proper closed subset of
Def(X,L).

Proof. We derive a contradiction assuming that the closure of
Def(X,L) \ Def(X,L)mov coincides with Def(X,L). For a point s ∈
Def(X,L) \ Def(X,L)mov, we denote by Ls the restriction of the uni-
versal bundle L to the fibre Xs at s. We will prove that Ls is big. By
Corollary [10, Corollary 3.10], the interior of the positive cone of an ir-
reducible symplectic manifold is contained in the effective cone. By the
assumption, L belongs to the closure of the positive cone of X. Hence
Ls also belongs to the closure of the positive cone of Xs. Thus Ls is
pseudo-effective. By [23, Theorem 3.1], We obtain the q-Zariski decom-
position

Ls = Ps +Ns,

which has the following three properties:

(1) The Chern class c1(Ps) belongs to the closure of the birational
Kähler cone.

(2) The divisor Ns is effective or trivial. If Ns is not trivial, then
the matrix (qXs(Ni, Nj))1≤i,j≤n is negative definite, where Ni,
(1 ≤ i ≤ n) is an irreducible component of Ns.

(3) qXs(Ps, Ni) = 0 for all i.

By the above properties, we have

0 = qXs(Ls) = qXs(Ps +Ns) = qXs(Ps) + qXs(Ns).

Since Ls does not belong to the closure of the birational Kähler cone of
Xs, Ns �= 0. This implies that qXs(Ps) > 0. We deduce Ps is big by [10,
Corollary 3.10]. Hence Ls is also big.

Let us consider the following function

Def(X,L) � s �→ hn(s) := dimH0(Xs,L
n
s ) ∈ Z.
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By the upper semicontinuity of hn(s), there exists an open set W of
Def(X,L) such that for every point s of W ,

hn(t) ≥ hn(s)

for all points t ∈ Def(X,L). By the assumption that the closure of
Def(X,L) \ Def(X,L)mov coincides with Def(X,L), W ∩ (Def(X,L) \
Def(X,L)mov) �= ∅. In the first half of the proof of this Lemma, we
have proved that Ls is big for every point s ∈ Def(X,L)\Def(X,L)mov.
This implies that Lt is big for every point Def(X,L). Let t be a point
of Def(X,L) such that dimH1,1(Xt,Q) = 1. Then Lt is nef by Lemma
3.3. Since Lt is nef and big, the higher cohomologies of Lt vanishes. By
the Riemann-Roch formula in [10, (1.11)], we obtain

dimH0(Xt,L
m
t ) =

dimXt/2∑
j=0

aj
2j

m2jqXt(Lt)
j = χ(OXt),

because qXt(Lt) = qX(L) = 0. That is a contradiction. Q.E.D.

We finish the proof of Corollary 1.1. If Λ∩Def(X,L)mov = ∅, Def(X,L)\
Def(X,L)mov contains dense subsets of Def(X,L). This contradicts
Lemma 3.7. Q.E.D.
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(126):181–192, 1985. Geometry of K3 surfaces: moduli and periods
(Palaiseau, 1981/1982).

[ 6 ] Frédéric Campana, Keiji Oguiso, and Thomas Peternell. Non-algebraic hy-
perkähler manifolds. J. Differential Geom., 85(3):397–424, 2010.

[ 7 ] Akira Fujiki. A theorem on bimeromorphic maps of Kähler manifolds and
its applications. Publ. Res. Inst. Math. Sci., 17(2):735–754, 1981.



On isotropic divisors on irreducible symplectic manifolds 311

[ 8 ] Akira Fujiki. On the de Rham cohomology group of a compact Kähler
symplectic manifold. In Algebraic geometry, Sendai, 1985, volume 10 of
Adv. Stud. Pure Math., pages 105–165. North-Holland, Amsterdam, 1987.

[ 9 ] Osamu Fujino. On Kawamata’s theorem. In Classification of algebraic va-
rieties, EMS Ser. Congr. Rep., pages 305–315. Eur. Math. Soc., Zürich,
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