Open Access
June 2007 Upper bound for sum of divisors function and the Riemann hypothesis
Aleksander Grytczuk
Tsukuba J. Math. 31(1): 67-75 (June 2007). DOI: 10.21099/tkbjm/1496165115

Abstract

Let $\sigma(n)$ denote the sum of divisors function. We prove that if $(2, m) = 1$ and $2m \gt 3^{9}$ then $1^{0} \sigma(2m) \lt \frac{39}{40}e^{\gamma}2m \log \log 2m$, and for all odd integers $m \gt \frac{3^{9}}{2}$, we have $2^{0} \sigma(m) \lt e^{\gamma}m \log \log m$. Moreover, we show that if $\sigma(2m) \lt \frac{3}{4}e^{\gamma}2m \log \log 2m$, for $m \gt m_{0}$ and $(2, m) = 1$, then the inequality $\sigma(2^{\alpha}m) \lt e^{\gamma}2^{\alpha}m \log \log 2^{\alpha}m$ is true for all integers $\alpha \geq 2$ and $m \gt m_{0}$. Robin criterion implies that the Riemann hypothesis is true for these cases.

Citation

Download Citation

Aleksander Grytczuk. "Upper bound for sum of divisors function and the Riemann hypothesis." Tsukuba J. Math. 31 (1) 67 - 75, June 2007. https://doi.org/10.21099/tkbjm/1496165115

Information

Published: June 2007
First available in Project Euclid: 30 May 2017

zbMATH: 1138.11042
MathSciNet: MR2337120
Digital Object Identifier: 10.21099/tkbjm/1496165115

Rights: Copyright © 2007 University of Tsukuba, Institute of Mathematics

Vol.31 • No. 1 • June 2007
Back to Top