Abstract
Let $\sigma(n)$ denote the sum of divisors function. We prove that if $(2, m) = 1$ and $2m \gt 3^{9}$ then $1^{0} \sigma(2m) \lt \frac{39}{40}e^{\gamma}2m \log \log 2m$, and for all odd integers $m \gt \frac{3^{9}}{2}$, we have $2^{0} \sigma(m) \lt e^{\gamma}m \log \log m$. Moreover, we show that if $\sigma(2m) \lt \frac{3}{4}e^{\gamma}2m \log \log 2m$, for $m \gt m_{0}$ and $(2, m) = 1$, then the inequality $\sigma(2^{\alpha}m) \lt e^{\gamma}2^{\alpha}m \log \log 2^{\alpha}m$ is true for all integers $\alpha \geq 2$ and $m \gt m_{0}$. Robin criterion implies that the Riemann hypothesis is true for these cases.
Citation
Aleksander Grytczuk. "Upper bound for sum of divisors function and the Riemann hypothesis." Tsukuba J. Math. 31 (1) 67 - 75, June 2007. https://doi.org/10.21099/tkbjm/1496165115
Information