Open Access
December 2005 On a result of Flammenkamp-Luca concerning noncototient sequence
Aleksander Grytczuk, Barbara Medryk
Tsukuba J. Math. 29(2): 533-538 (December 2005). DOI: 10.21099/tkbjm/1496164969

Abstract

Let $\varphi(n)$ be the Euler totient function of $n$. A positive integer $m$ is called a noncototient if the equation $n-\varphi(n)=m$ has no solution in positive integers $n$. The sequence $(2^{k}p)_{k=1}^{\infty}$ which is noncototient for some prime $p$ will be called as Sierpiński's sequence. In this paper we prove some interesting properties of the Sierpiński sequence given in the Theorem 1, 2, 3.

Citation

Download Citation

Aleksander Grytczuk. Barbara Medryk. "On a result of Flammenkamp-Luca concerning noncototient sequence." Tsukuba J. Math. 29 (2) 533 - 538, December 2005. https://doi.org/10.21099/tkbjm/1496164969

Information

Published: December 2005
First available in Project Euclid: 30 May 2017

zbMATH: 1090.11003
MathSciNet: MR2177025
Digital Object Identifier: 10.21099/tkbjm/1496164969

Rights: Copyright © 2005 University of Tsukuba, Institute of Mathematics

Vol.29 • No. 2 • December 2005
Back to Top