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ON A RESULT OF FLAMMENKAMP-LUCA
CONCERNING NONCOTOTIENT SEQUENCE

By

Aleksander GRYTCZUK and Barbara MHDRYK

Abstract. Let $\varphi(n)$ be the Euler totient function of $n$ . A positive
integer $m$ is called a noncototient if the equation $n-\varphi(n)=m$ has
no solution in positive integers $n$ . The sequence $(2^{k}p)_{k=1}^{\infty}$ which is
noncototient for some prime $p$ will be called as Sierpi\’{n}ski’s sequence.
In this paper we prove some interesting properties of the Sierpi\’{n}ski
sequence given in the Theorem 1, 2, 3.

1. Introduction

In 1959 Sierpi\’{n}ski ([6], pp. 200-201) asked whether there exist infinitely many
natural numbers $m$ such that $m\neq n-\varphi(n)$ , (see also, Erd\’os [2] and B36 in [4]).
Using Riesel’s result ([5]), that all numbers of the form 2$kp0-1$ with prime
$p0=509203$ are composite for $k=1,2,$ $\ldots$ , Browkin and Schinzel [1] proved that
all numbers 2 $kp0$ can not be presented in the form $n-\varphi(n)$ . It is a positive
answer to the question posed by Sierpi\’{n}ski.

Hence there is Sierpi\’{n}ski’s sequence with $p_{0}=509203$ .
In the paper [3] Flammenkamp and Luca proved the following sufficient

condition for the sequence $(2^{k}p)_{k\geq 1}$ to be noncototient.
Let $p$ be a positive integer satisfying the following four conditions:
(i) $p$ is an odd prime
(ii) $p$ is not a Mersenne prime
(iii) the number 2$kp-1$ is composite for all integers $k\geq 1$

(iv) $2p$ is a noncototient.
Then the sequence $(2^{k}p)_{k\geq 1}$ is a noncototient, so is the Sierpi\’{n}ski se-

quence.
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In this connection we prove, in the Theorem 1 that the above conditions are
also neccessary. Moreover in the Theorem 2 we prove that there are infinitely
many primes $p$ for which the conditions (ii) and (iii) are fulfilled. Further in the
Theorem 3 we prove that $2p$ is of the form $n-\varphi(n)$ if and only if there are
different odd primes $p_{j}$ where $j=1,2,$

$\ldots,$
$r;r\geq 1$ such that $p=p_{1}p_{2}\cdots p_{r}-$

$\frac{1}{2}(p_{1}-1)(p_{2}-1)\cdots(p_{r}-1)$ .

2. The Results

THEOREM 1. Let $p$ be an odd prime. The sequence $(2^{k}p)_{k=1}^{\infty}$ is the Sierpi\’{n}ski
sequence if and only if

1. $2p$ is a noncototient
$2^{0}$ . $p$ is not a Mersenne prime
$3^{0}.2^{k}p-1$ is composite for every positive integer $k\geq 1$ .

THEOREM 2. There are infinitely many primes $p$ in the arithmetical pro-

gression: $m\prod_{j=1}^{6}q_{j}+p0$ , where $p0=509203,\prod_{j=1}^{6}q_{j}=3\times 5\times 7\times 13\times 17\times 241$ such
that:

1. $2^{k}p-1$ is composite for every positive integer $k\geq 1$

$2^{0}$ . $p$ is not a Mersenne prime.

THEOREM 3. The number $2p$ , where $p$ is an odd prime is of the form $n-\varphi(n)$

if and only if there are different odd primes $p_{j}$ , where $j=1,2,$
$\ldots,$

$r;r\geq 1$ such
that $p=p1p2$ $p,$ $-\frac{1}{2}(p\iota-1)(p_{2}-1)\cdots(p_{r}-1)$ .

3. Proof of Theorem 1

The sufficiency of conditions we prove by induction with respect to $k$ . Suppose
that the conditions 1-3 are satisfied. Then we see that the first step of inductive
process follows by the assumption 1. Now, we assume that the number $2^{k-1}p$ is a
noncototient and suppose that 2 $kp$ is a cototient. Hence, for some natural number
$n_{k}$ we have

(3.1) 2 $kp=n_{k}-\varphi(n_{k})$ .

Since $\varphi(n_{k})\equiv 0(mod 4)$ or $\varphi(n_{k})\equiv 2(mod 4)$ then from (3.1) we have
$n_{k}\equiv 0(mod 4)$ or $n_{k}=2q^{\alpha},$ $\alpha\geq 1$ , where $q$ is odd prime, respectively. If
$n_{k}\equiv 0(mod 4)$ then $\frac{\varphi(n_{k})}{2}=\varphi(\frac{n_{k}}{2})$ and by (3.1) it follows that
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(3.2) $2^{k-1}p=\frac{n_{k}}{2}-\varphi(\frac{n_{k}}{2})$ ,

and we get a contradiction with inductive assumption.
In the second case (3.1) implies

(3.3) 2 $kp=2q^{\alpha}-\varphi(2q^{\alpha})=q^{\alpha-1}(q+1)$ .

If $\alpha=1$ then (3.3) implies 2$kp-1=q$ , contrary to condition $3^{0}$ . Hence,
$\alpha>1$ and from (3.3) we obtain

(3.4) $q^{\alpha-1}|p$ .

From (3.4) we have $\alpha=2$ and $q=p$ and (3.3) implies $2^{k}-1=p$ . Again we
obtain a contradiction with condition $2^{0}$ .

Now, we can prove the necessity of these conditions. Suppose that the se-
quence $(2^{k}p)_{k\geq 1}$ is noncototient for every positive integer $k$ . Then we see that the
condition 1 follows immediately for $k=1$ .

It remains to prove that the conditions $2^{0}$ and $3^{0}$ are satisfied. We prove
this fact by contraposition. Indeed suppose that for some natural $k>1$ we have
$2^{k}-1=p$ or 2$kp-1=q$ , where $p$ and $q$ are odd primes. Let $p=2^{k}-1$ . Then
taking $n=2p^{2}$ we get

(3.5) $n-\varphi(n)=2p^{2}-\varphi(2p^{2})=2p^{2}-p(p-1)=p(p+1)$ .

Since $p=2^{k}-1$ then (3.5) implies $n-\varphi(n)=2^{k}p$ .
The case 2$kp-1=q$ is considered similarly. Taking‘ $n=2q$ we get

$n-\varphi(n)=2q-\varphi(2q)=2q-(q-1)=q+1=2^{k}p$

and the proof of the theorem 1 is complete. $\blacksquare$

4. Proof of the Theorem 2

In the proof of the Theorem 2 we use of the following Lemma:

LEMMA 1. Let $p0=509203$ . Then we have

(4.1) $p0\equiv 2^{a_{/}}(mod q_{j})$

(4.2) 2 $kp0\equiv 1(mod q_{j})$ ,

where

(4.3) $\langle qj, a_{j}\rangle=\{\langle 3,0\rangle, \langle 5,3\rangle, \langle 7,1\rangle, \langle 13,5\rangle, \langle 17,1\rangle, \langle 241,21\rangle\}$
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for $j=1,2,$
$\ldots,$

$6$ and every integer $k$ satisfies of the congruences

(4.4) $k\equiv-a_{j}(mod m_{j})$ ,

for $m_{j}=2,4,3$ , 12,8,24 and $j=1,2,$ $\ldots,$
$6$ respectively.

The proof of Lemma is given in the paper [1]. For the proof of the Theorem
2 consider the following arithmetical progression:

(4.5) $m\prod_{j=1}^{6}q_{j}+p0$ , $\prod_{j=1}^{6}q_{j}=3\times 5\times 7\times 13\times 17\times 241$ .

By (4.2) it follows that $(p0,\prod_{j=1}^{6}q_{j})=1$ and consequently Dirichlet’s theorem

on arithmetical progression implies that there are infinitely many primes $p$ con-

tained in the progression (4.5). Let $p=m\prod_{j=1}^{6}q_{j}+p0$ be one of such primes. Then
we have

(4.6) 2 $kp-1=2^{k}(m\prod_{j=1}^{6}q_{j}+po)-1=2^{k}m\prod_{j=1}^{6}q_{j}+2^{k}p0-1$ .

From (4.6) and (4.2) we obtain

$2^{k}p-1\equiv 0(mod q_{j})$ ,

hence, all numbers 2$kp-1$ are composite.
For the proof of the second part of the theorem 2 suppose that there is a

prime number $p$ in the arithmetical progression $m\prod^{6}q_{j}+p_{0}$ that is a Mersenne
prime. Hence for some prime $k$ we have $j=1$

(4.7) $p=m\prod_{j=1}^{6}q_{j}+p0=2^{k}-1$ .

From (4.7) we get

(4.8) $q_{j}|2^{k}-1-p0$ , for some $q_{j}=3,5,7,13,17,241$ .

By (4.8) it follows that

(4.9) $q_{j}|po(2^{k}-1-po)=2^{k}p0-po(p0+1)+1-1$ .
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Since $q_{j}|2^{k}p_{0}-1$ , from (4.2) then by (4.9) it follows that

(4.10) $q_{j}|p_{0}(Fo+1)-1$ .

Using computer calculation we get the following factorization into primes

(4.11) $p_{0}(p_{0}+1)-1=509203\times 509204-1=59\times 71\times 809\times 76511$ .

From (4.11) it follows that none of $q_{j}=3,5,7,13,17,241$ satisfies the relation
(4.10).

The proof of the theorem 2 is complete. $\blacksquare$

5. Proof of the Theorem 3

Suppose that for some natural number $n$ the number $2p$ has presantation in
the form

(5.1) $2p=n-\varphi(n)$

Let $n=2^{\alpha}p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\cdots p_{r}^{\alpha_{r}}$ , where $p_{j}$ are different odd primes for $j=1,2,$
$\ldots,$

$r$;
$r\geq 1$ then $\varphi(n)=2^{\alpha-1}p_{1}^{\alpha_{1}-1}\cdots p_{r}^{\alpha_{r}-1}(p1-1)\cdots(p_{r}-1)$ and by (5.1) it follows
that

(5.2) $2p=2^{\alpha-1}p_{1}^{\alpha_{1}-1}\cdots p_{r}^{\alpha_{r}-1}(2p_{1}\cdots p_{\gamma}-(p1-1)\cdots(p_{r}-1))$ .

If $\alpha\geq 2$ then (5.2) is impossible. Hence, $\alpha=1$ and by (5.2) follows that
$\alpha_{j}=1$ for $j=1,2,$

$\ldots,$
$r$ and consequently (5.2) implies that

(5.3) $p=p_{1}p2$ $p_{\gamma}-\frac{1}{2}(p1-1)(p_{2}-1)\cdots(p, -1)$ .

Conversely, assume that (5.3) is satisfied. Then putting $n=2p1$ $p_{r}$ we have
$\varphi(n)=(p_{1}-1)\cdots(p_{r}-1)$ and we see that (5.3) implies $2p=n-\varphi(n)$ . The proof
is complete. $\blacksquare$
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