Translator Disclaimer
December 2004 Holomorphic vector bundles on quadric hypersurfaces of infinite-dimensional projective spaces
E. Ballico
Tsukuba J. Math. 28(2): 279-289 (December 2004). DOI: 10.21099/tkbjm/1496164801

Abstract

Here we prove the following result and a few related statements. Let $V$ be a Banach space with countable unconditional basis and the localizing property, $Q\subset P(V)$ a quadric hypersurface with finite-dimensional singular locus and $E$ a holomorphic vector bundle of finite rank on $Q$. Then $E\cong\oplus_{1\leq i\leq r}0_{Q}(a_{i})$ for some integers $a_{i}$ and $h^{1}(Q, E(t))=0$ for every integer $t$.

Citation

Download Citation

E. Ballico. "Holomorphic vector bundles on quadric hypersurfaces of infinite-dimensional projective spaces." Tsukuba J. Math. 28 (2) 279 - 289, December 2004. https://doi.org/10.21099/tkbjm/1496164801

Information

Published: December 2004
First available in Project Euclid: 30 May 2017

zbMATH: 1082.32014
MathSciNet: MR2105937
Digital Object Identifier: 10.21099/tkbjm/1496164801

Rights: Copyright © 2004 University of Tsukuba, Institute of Mathematics

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.28 • No. 2 • December 2004
Back to Top