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HOLOMORPHIC VECTOR BUNDLES ON QUADRIC
HYPERSURFACES OF INFINITE-DIMENSIONAL

PR0JECTIVE SPACES

By

E. BALLICO

Abstract. Here we prove the following result and a few related
statements. Let $V$ be a Banach space with countable unconditional
basis and the localizing property, $Q\subset P(V)$ a quadric hypersurface
with finite-dimensional singular locus and $E$ a holomorphic vector
bundle of finite rank on $Q$ . Then $E\cong\oplus_{1\leq i\leq r}0_{Q}(a_{j})$ for some
integers $a_{j}$ and $h^{1}(Q, E(t))=0$ for every integer $t$ .

1. Introduction

In [L1], Th. 8.5 and Th. 8.1, there is a complete classification of all
holomorphic vector bundles of finite rank on $P(V)$ when $V$ is a “good” infinite-
dimensional Banach space (e.g. a separable Hilbert space). In this paper we
consider holomorphic vector bundles on quadric hypersurfaces of $P(V)$ and prove
the following result.

THEOREM 1.1. Let $V$ be a Banach space with countable unconditional basis
and the localizing property and $Q\subset P(V)$ a quadric hypersurface. Assume either
$Q$ smooth or that its singular locus is finite-dimensional. Let $E$ be a rank $r$

holomorphic vector bundle on Q. Then there are uniquely determined integers
$a_{1}\geq\cdots\geq a_{r}$ such that $E\cong 0_{Q}(a_{1})\oplus\cdots\oplus 0_{Q}(a_{r})$ . Furthermore, $h^{1}(Q, E(t))=0$

for every integer $t$ .

To avoid any misunderstanding we stress that in this paper every holomorphic
vector bundle is assumed to be locally holomorphically trivial in the sense of [L1],
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p. 490. Hence in general our assumptions on holomorphic vector bundles are
stronger than the ones in [L1]. The last assertion of Theorem 1.1 was proved (for
an arbitrary hypersurface of $P(V))$ in [B2]. The proof of Theorem 1.1 given in
section 4 use [L1] and [L2] in an essential way; even paper [B2] which will use
several times in the proof of the splitting of $E$ given in section 4 depends heavily
from [L1] and [L2].

In section 5 we will also prove in a completely different way the following
more elementary result.

THEOREM 1.2. Fix an integer $r\geq 1$ . Let $V$ be a Banach space with countable
unconditional basis and the localizing property and $X\subset P(V)$ a reducible but
reduced quadric hypersurface. Let $E$ be a holomorphic rank $r$ vector bundle on
X. Then there is a uniquely determined non-increasing sequence of $r$ integers
$a_{1}\geq\cdots\geq a_{r}$ such that $E\cong\oplus_{1\leq i\leq r}0_{X}(a_{i})$ . Furthermore, $h^{1}(X, E(t))=0$ for
every integer $t$ .

In section 3 we will consider quadric hypersurfaces of $P(C^{(N)})$ (see Remarks 3.1,
3.2 and 3.3). In section two we collect several results easily obtained from [T] and
[S] and which are related to $P(C^{(N)})$ .

This research was partially supported by MIUR and GNSAGA of INdAM
(Italy). I want to thank the referee for very stimulating suggestions.

2. Finite-Dimensional Results

We will use the following result ([T], Th. 1 at p. 1199, or [S], Main Theorem).

LEMMA 2.1. Fix an integer $r\geq 1$ . Let $ P^{1}\subset P^{2}\subset\cdots\subset P^{n}\subset P^{n+1}\subset\cdots$ be
an infinite tower ofprojective spaces, $i.e$. for any $n\geq 1$ see $P^{n}$ as a hyperplane $H_{n}$

on $P^{n+1}$ . Let $E_{n},$ $n\geq 1$ , be a rank $r$ vector bundle on $P^{n}$ such that $E_{n+1}|H_{n}\cong E_{n}$

for all $n$ . Then there are integers $a_{1},$
$\ldots,$

$a_{r}$ such that $E_{n}\cong\oplus_{1\leq i\leq r}0_{P^{n}}(a_{j})$ for
every $n$ .

PROPOSITIONA 2.2. Fix an integer $r\geq 1$ . Let $ P^{1}\subset P^{2}\subset\cdots\subset P^{n}\subset$

$ P^{n+1}\subset\cdots$ be an infinite tower ofprojective spaces, $i.e$. for any $n\geq 1$ see $P^{n}$ as a
hyperplane $H_{n}$ on $P^{n+1}$ . Let $Q_{n}\subset P^{n+1},$ $n\geq 2$ , be a smooth quadric hypersurface
such that $Q_{n}|H_{n}=Q_{n-1}$ for all $n\geq 3$ . Let $E_{n},$ $n\geq 1$ , be a rank $r$ vector bundle on
$Q_{n}$ such that $E_{n+1}|H_{n}\cong E_{n}$ for all $n$ . Then there are integers $a_{1},$

$\ldots,$
$a_{r}$ such that

$E_{n}\cong\oplus_{1\leq i\leq r}0_{Q_{n}}(a_{j})$ for every $n$ .

PROOF. By [T], Lemma 3.2 at p. 1201, the tower of vector bundles $E_{n}$ ,
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$n\geq 1$ , is level, i.e. for every $n\geq 3$ and any two lines $D,$ $R$ contained in $Q_{n}$ , the
vector bundles $E_{n}|D$ and $E_{n}|R$ have the same splitting type; with the terminology
of [OSS], \S 3, and of [B1] each vector bundle $E_{n}$ is uniform. If $n\geq 2r+3$ ,
then every uniform rank $r$ vector bundle on $Q_{n}$ is isomorphic to a direct sum of $r$

lines bundles, say $E_{n}\cong\oplus_{1\leq i\leq r}0_{Q_{n}}(a_{j})$ with $a_{1}\geq\cdots\geq a_{r}$ ([B1], Th. 1). Since
$Q_{n}|H_{n}=Q_{n-1}$ for all $n\geq 3$ , the non-increasing sequence of integer $a_{1}\geq\cdots\geq a_{r}$

is the same for all $n$ .

LEMMA 2.3. Fix integers $r$ and $a$ such that $r\geq 1$ . Let $S\subset P^{3}$ be an irreduc-
ible quadric cone and call $P$ its vertex. Let $E$ be a rank $r$ vector bundle on $S$ such
that for every line $D$ with $D\subset S$ we have $E|D\cong 0_{D}(a)^{\oplus r}$ . Then $E\cong 0_{S}(a)^{\oplus r}$ .

PROOF. Let $u:A\rightarrow S$ be the blowing-up of $S$ at $P$ . Set $h:=u^{-1}(P)$ and let
$f$ be the strict transform in $A$ of any line $D\subset S$ . Thus $A$ is smooth rational
surface isomorphic to the Hirzebruch surface $F_{2}$ and $h$ is smooth and rational.
There is a ruling $\pi$ : $A\rightarrow P^{1}$ and we may take as $f$ any fiber of the ruling $\pi$ .
We have $Pic(A)\cong Z^{\oplus 2}$ and we may take $h$ and $f$ as a basis of $Pic(A)$ . We
have $h^{2}=-2,$ $h\cdot f=1$ and $f^{2}=0$ . We have $0_{A}(h+2f)=u^{*}(0_{S}(1))$ . Set $F:=$

$u^{*}(E)$ . The condition $E|D\cong 0_{D}(a)^{\oplus r}$ is equivalent to say that for every fiber $T$

of $\pi$ the vector bundle $F|T$ is the direct sum of $r$ line bundles of degree $a$ . In
particular the splitting type of the restriction of $F$ is the same for all fibers of $\pi$ ,
i.e. $F$ is a $\pi$-uniform bundle of a $\pi$-uniform bundle in the sense of Ishimura ([I]).
Since $F=u^{*}(E)$ and $E$ is locally trivial around $P$ , there is an open neighborhood
$U$ of $h$ in $A$ such that $F|U$ is trivial. Since $F|U$ is trivial and $u_{*}(0_{A})=0_{S}$ , we
have $E\cong u_{*}(F)$ . If $r=1$ the triviality of $F|h$ implies the existence of an integer $b$

such that $F\cong 0_{A}(bh+2bf)$ . Thus $E=u_{*}(F)\cong 0_{S}(b)$ . Since $E|D$ has degree $a$ ,
we have $b=a$ , proving the case $r=1$ . Fix a smooth curve $C\in|h+2f|$ . Thus
$C\cong P^{1},$ $C\cap h=\emptyset,$ $C$ is a section of $\pi,$ $u$ is an isomorphism in a neighborhood
of $C$ and $u(C)$ is a smooth conic contained is $S$ . Now assumer $r\geq 2$ . For every
fiber $T$ of $\pi$ the vector bundle $F(-aC)|T$ is trivial. Thus $h^{0}(T, F(-aC)|T)=r$

and $h^{1}(T, F(-ah)|T)=0$ . Thus $\pi_{*}(F(-aC))$ is a rank $r$ vector bundle on $P^{1}$ and
the natural map $\pi^{*}(\pi_{*}(F(-aC)))\rightarrow F(-aC)$ is an isomorphism ([OSS], Base-
change theorem at p. 11). Since $\pi^{*}(B)|h\cong B$ for any vector bundle $B$ on $P^{1}$

and $F|h$ is trivial, we obtain $F\cong 0_{A}(ah+2af)^{\oplus r}$ . Thus $E\cong u_{*}(F)\cong 0_{S}(a)^{\oplus r}$ ,
proving the lemma.

PROPOSITION 2.4. Fix integers $r,$ $b,$ $n$ with $r\geq 1,$ $b\geq-1$ and $n\geq 2r+5+b$ .
Let $S\subset P^{n}$ be an irreducible quadric hypersurface of rank $n-b$ , i.e. such that
Sing $(Q)$ has dimension $b-1$ . Let $E$ be a rank $r$ vector bundle on S. Assume the
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existence of integers $a_{1},$
$\ldots,$

$a_{r}$ such that $E|D\cong\oplus_{1\leq i\leq r}0_{D}(a_{j})$ for every line
$D\subset S$ . Then $E\cong\oplus_{1\leq i\leq r}0_{S}(a_{j})$ .

PROOF. We stress that the proofs in [B1] are just adaptations to the quadric
case and to some more general subvarieties of $P^{n}$ of the results proved in [EF] for
$P^{n}$ . The case $b=-1$ , i.e. the case $S$ smooth, is [B1], Th. 1. Thus we may assume
$b\geq 0$ , i.e. we may assume that $S$ is a quadric cone and assume that the result
true for the integer $b^{\prime}:=b-1$ . Let $W$ be the vertex of $S$ . Thus $W$ is a b-
dimensional linear space. Consider the exact sequence

$0\rightarrow I_{S}(t)\rightarrow 0_{P^{n}}(t)\rightarrow 0_{S}(t)\rightarrow 0$ (1)

Since the ideal sheaf $I_{S}$ of $S$ in $P^{n}$ is isomorphic to $0_{P^{n}}(-2)$ , from (1) and
the known cohomology of line bundles on $P^{n}$ we obtain $h^{1}(P^{n}, I_{S}(t))=$

$h^{i}(S, 0_{S}(t))=0$ for all integers $i,$ $t$ with $1\leq i\leq n-1$ . This is equivalent to say
that $S$ is an arithmetically Cohen-Macaulay subvariety of $P^{n}$ . Let $H$ be a general
hyperplane of $P^{n}$ . Set $Y:=S\cap H$ . Hence $Y\subset H$ is an irreducible quadric cone
and $W\cap H$ is the vertex of $Y$ . By the inductive assumption on $ bE|Y\cong$

$\oplus_{1\leq l\leq r}0_{Y}(a_{i})$ . We order the integers $a_{1},$
$\ldots,$

$a_{r}$ so that $a_{1}\geq\cdots\geq a_{r}$ . If $a_{r}=a_{1}$ ,
set $k=r$ . If $a_{r}<a_{1}$ , let $k$ be the first integer such that $1\leq k<r$ and $a_{k}>a_{k+1}$ .
Since $\dim(Y)\geq 2$ , the first part of the proof gives $h^{1}(Y, (E|Y)(t))=0$ for all
integers $t$ . Since the conormal bundle of $Y$ in $S$ is isomorphic to $0_{Y}(-1)$ , from
[B1], Prop. 1, we obtain $h^{1}(S, E(t))=0$ for every $t\in Z$ . From the cohomology
exact sequence associated to the exact sequence

$0\rightarrow E(t-1)\rightarrow E(t)\rightarrow E(t)|Y\rightarrow 0$ (2)

we obtain $h^{0}(S, E(-a_{1}))=k$ and that the restriction map $ H^{0}(S, E(-a_{1}))\rightarrow$

$H^{0}(Y, E(-a_{1})|Y)$ is bijective. Notice that $H^{0}(Y, E(-a_{1})|Y)$ spans a trivial rank
$k$ factor of $E(-a_{1})|Y$ . Moving $H$ between all hyperplanes not containing $W$

we obtain that $H^{0}(S, E(-a_{1}))$ spans a trivial rank subbundle $F$ of $E(-a_{1})$ .
If $k=r$ , this implies $E\cong F(a_{1})$ , i.e. $E\cong\oplus_{1\leq i\leq r}0_{S}(a_{j})$ , proving the result in
this case. Now assume $k<r$ . For every line $D\subset S$ we have $ E/F(a_{1})|D\cong$

$\oplus_{k+1\leq i\leq r}0_{D}(a_{j})$ . Hence by induction on the rank $r$ we may assume $ E/F(a_{1})\cong$

$\oplus_{k+1\leq i\leq r}0_{S}(a_{j})$ . Since $h^{1}(S, 0_{S}(t))=0$ for every $t$ , every extension of $E/F(a_{1})$

by $F(a_{1})$ splits. Thus $E\cong\oplus_{1\leq i\leq r}0_{S}(a_{i})$ .

3. Countable Vector Space

In this section we consider $C^{(N)}$ equipped with the finite-dimensional
topology.
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REMARK 3.1. For every integer $n\geq 1$ consider the embedding of $C^{n}$

into $C^{(N)}$ made sending $(z_{1}, \ldots , z_{n})$ into $(z_{1}, \ldots , z_{n}, 0, \ldots)$ . In this way we obtain
an infinite countable tower of projective spaces $ P^{0}\subset P^{1}\subset P^{2}\subset\cdots\subset P^{n}\subset$

$P^{n+1}\subset\cdots\subset P(C^{(N)})$ . Fix an integer $r>0$ . Let $E$ be a rank $r$ holomorphic
vector bundle on $P(C^{(N)})$ . Set $E_{n}:=E|P^{n}$ . Each $E_{n}$ is a holomorphic vector
bundle on $P^{n}$ and $E_{n+1}|P_{n}\cong E_{n}$ for all $n$ . Conversely, the topology of $C^{(N)}$ is
such that given any tower $E_{n},$ $n\geq 1$ , of holomorphic rank $r$ vector bundles with
the condition $E_{n+1}|P_{n}\cong E_{n}$ for all $n$ there is a unique (up to isomorphisms) rank
$r$ vector bundle $E$ on $P(C^{(N)})$ such that $E_{n}\cong E|P^{n}$ for all $n$ . By Lemma 2.1 we
have $E\cong\oplus_{1\leq i\leq r}0_{P(C^{(N)})}(a_{j})$ for some integers $a_{1},$

$\ldots,$
$a_{r}$ .

From now on in this section we fix the tower $ P^{0}\subset P^{1}\subset P^{2}\subset\cdots\subset P^{n}\subset$

$P^{n+1}\subset\cdots\subset P(C^{(N)})$ introduced in Remark 3.1.

REMARK 3.2. Every homogeneous polynomial on $C^{(N)}$ is continuous ([D],
Ex. 1.63). Hence to give a degree $d$ hypersurface (even not reduced or not
irreducible) $X$ of $C^{(N)}$ is equivalent to give for all integers $n\geq 1$ a degree $d$

hypersurface $X_{n-1}$ of $P^{n}$ . Let $E$ be a rank $r$ holomorphic vector bundle on $X$ . For
all $n\geq 0$ set $E_{n}:=E|X_{n}$ . Each $E_{n}$ is a holomorphic vector bundle on $X_{n}$ and
$E_{n+1}|X_{n}\cong E_{n}$ for all $n$ . Conversely, the topology of $C^{(N)}$ is such that given
any tower $E_{n},$ $n\geq 0$ , of holomorphic rank $r$ vector bundles with the condition
$E_{n+1}|X_{n}\cong E_{n}$ for all $n$ there is a unique (up to isomorphisms) rank $r$ vector
bundle $E$ on $X$ such that $E_{n}\cong E|X_{n}$ for all $n$ .

REMARK 3.3. By [G], Th. 1 at p. 63, every quadratic form on $C^{(N)}$ may
be diagonalized. Hence any quadratic form $Q$ on $C^{(N)}$ is uniquely determined,
up to the action of $GL(C^{(N)})$ , by a pair $(\alpha,\beta)$ , where $\alpha$ is either a non-negative
integer or the simbol $\infty$ and $\beta$ is either a non-negative integer or the symbol $\infty$

and if $ a\neq\infty$ , then $ b=\infty:\alpha$ is the rank of $Q$ and $\beta$ is its corank, i.e. $\beta$ is
the dimension of the maximal linear subspace $A$ of $C^{(N)}$ such that $Q(x, y)=0$

for every $x\in A$ and every $y\in C^{(N)}$ . Conversely, any such pair $(\alpha,\beta)$ is associated
to a quadratic form on $C^{(N)}$ ; if $\alpha$ is finite, take a diagonal form $Q=\sum_{1\leq i\leq\alpha}z_{i}^{2}$ ;
if $\beta$ is finite take $Q=\sum_{i\geq\beta+1}z_{i}^{2}$ ; if $(\alpha,\beta)=(\infty, \infty)$ take $Q=\sum_{i\geq 1}z_{2i}^{2}$ . The
quadratic form $Q$ associated to the pair $(\alpha,\beta)$ is non-degenerate if and only if
$\beta=0$ .

LEMMA 3.4. Let $V$ be an infinite dimensional complex vector space and $Q$

an irreducible quadric hypersurface of $P(V)$ . Fix lines $A,$ $B$ on Q. Then there are
two chains of projective spaces $A_{1}\subset A_{2}\subset\cdots\subset Q$ and $B_{1}\subset B_{2}\subset\cdots Q$ such that
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$dim(A_{n})=dim(B_{n})=n$ for all $n,$ $A=A_{1},$ $B=B_{1}$ and $A_{j}\cap B_{j}$ containing a line for
$i>>0$ .

PROOF. Taking instead of $V$ any countable infinite vector subspace of $V$

containing the vector subspace of dimension at most 4 associated to the linear
span of $A\cup B$ , we reduce to the case $V=C^{(N)}$ . Since $Q$ is diagonalizable, it
is easy to check that both $A$ and $B$ are contained in an infinite increasing tower
of projective spaces. If $Q$ is singular and its singular set Sing $(Q)$ is at least a
line, then taking a join of any two such towers of projective spaces with a line,
then we obtain two towers $A_{1}\subset A_{2}\subset\cdots\subset Q$ and $B_{1}\subset B_{2}\subset\cdots Q$ such that
$\dim(A_{n})=\dim(B_{n})=n$ for all $n,$ $A=A_{1},$ $B=B_{1}$ and $A_{i}\cap B_{j}$ containing a line
for $i\gg O$ . Call $(\alpha(Q),\beta(Q))$ the invariants associated to $Q$ in Remark 3.2. We
have solved all cases except the ones with $0\leq\beta(Q)\leq 1$ . We will do the case
$\beta(Q)=0$ (i.e. $Q$ smooth) leaving the very similar case $\beta(Q)=1$ to the reader.
Up to a linear transformation we may assume that $Q=\{\sum_{i\geq 1}z_{i}^{2}\}$ . Let $n$ be
any positive integer such that both $A$ and $B$ are contained in the projectivi-
zation of the linear subspace $W=C^{n}$ of $C^{(N)}$ given by $z_{j}=0$ for all $i>n$ .
We may change the coordinates of $C^{(N)}$ keeping fixed the ones of $W$ in such
a way in the new homogeneous coordinates $z_{1},$

$\ldots,$
$z_{n},$ $x_{i},$ $y_{j}$ , $i\geq 1$ , $Q=$

$\{\sum_{1\leq i\leq n}z_{i}^{2}+\sum_{i\geq 1}x_{j}y_{i}=0\}$ . Take as $A_{1}\subset A_{2}\subset\cdots\subset A_{k}\subset Q$ (resp. $ B_{1}\subset$

$B_{2}\subset\cdots\subset B_{k}\subset Q)$ any tower obtained from $A$ (resp. $B$) taking the cone with
vertex $x_{j}=0$ for $1\leq i\leq k-1,$ $y_{j}=0$ .

4. Proof of Theorem 1.1

LEMMA 4.1. Let $V$ be a Banach space with countable unconditional basis and
the localizing property and $Q\subset P(V)$ a quadric hypersurface whose singular locus
is one point. Let $E$ be a rank $r$ holomorphic vector bundle on Q. Assume the
existence of a line $D\subset Q$ such that $E|D$ is trivial. Then $E$ is trivial and
$h^{1}(Q, E(t))=0$ for every integer $t$ .

PROOF. Let $P$ be the singular point of $Q$ . Take a closed hyperplane $H$ of
$P(V)$ such that $Q\cap H$ is a smooth quadric hypersurface of $H$ . Let $u:Z\rightarrow Q$ be
the blowing-up of $Q$ at $P$ , i.e. the closure of $v^{-1}(Q\backslash \{P\})$ in $B1_{P}(P(V))$ , where
$v:B1_{P}(P(V))\rightarrow P(V)$ is the blowing-up of $P(V)$ at $P$ considered in [L1], \S 7. $Z$ is
a smooth manifold and there is a holomorphic map $\pi$ : $Z\rightarrow Q\cap H$ such that
$Z\cong P(0_{Q\cap H}\oplus O_{Q\cap H}(-1))$ and $\pi$ is the associated $P^{1}$ -bundle. The closed set
$u^{-1}(P)$ is a smooth manifold isomorphic to $Q\cap H$ and $\pi|u^{-1}(P)$ induces an
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isomorphism between $u^{-1}(P)$ and $Q\cap H$ . Furthermore, $u^{-1}(P)$ is a Cartier divisor
of $Z$ . Set $F:=u^{*}(E)$ . Thus $F$ is a rank $r$ holomorphic vector bundle on $F$ .
Since $E$ is locally trivial, there is an open neighborhood $U$ of $u^{-1}(P)$ such that
$F|U\cong 0_{U}^{\oplus r}$ .

Claim: The sheaf $\pi_{*}(F)$ is a locally free sheaf on $Q\cap H$ with rank $(\pi_{*}(F))=r$

and the natural map $\alpha$ : $\pi^{*}(\pi_{*}(F))\rightarrow F$ is an isomorphism.

PROOF. By [H], Example 5 at p. 38, Th. 1’ at p. 46 and Th. 2 at p. 50, the
sheaf $\pi_{*}(F)$ is pseudo-coherent in the sense of [H]; here we use that $Q\cap H$ is
locally paracompact. By Lemmas 2.1 and 3.4 for every line $R\subset Q$ we have
$E|R\cong 0_{R}^{\oplus r}$ . Hence for every fiber $T$ of $\pi$ we have $F|T\cong 0_{T}^{\oplus r}$ . The morphism $\pi$

is a locally trivial $P^{1}$ -bundle and in particular it has locally many sections. Fix
one such section $\sigma$ , a point $A\in M\cap H$ and an open neighborhood $\Omega$ of $A$ on
which $\sigma$ is defined and such that $\pi^{-1}(\Omega)\cong\Omega xP^{1}$ . Since $F$ is locally trivial, we
may also assume that $F$ is trivial to arbitrary order in the sense of [L1], line 10 of
p. 505. Hence we may apply [L1], Prop. 5.7, and obtain that $\pi_{*}(F)$ is a rank $r$

vector bundle on $U$ ; notice that [L1], Prop. 5.7, states that $\pi_{*}(F)$ is holomor-
phically locally trivial. Furthermore, by [L1], Prop. 5.7, the map $\alpha$ is fiberwise
injective with a subbundle of $F$ as image. Since rank $(\pi_{*}(F))=rank(F),$ $\alpha$ is an
isomorphism, proving the claim.

Since $F$ is trivial in an open neighborhood of $u^{-1}(P)$ and $\pi^{*}(\pi_{*}(F))|$

$u^{-1}(P)\cong\pi_{*}(F),$ $\pi_{*}(F)$ is trivial. Hence the bijectivity of $\alpha$ implies the triviality
of $F$ . We have $\pi_{*}(0_{Z})=0_{Q}$ and $\pi_{*}((\pi^{*}(A))\cong A$ for every holomorphic vector
bundle $A$ on $Q$ . Thus $E\cong\pi_{*}(F)$ . Since $F\cong 0_{Z}^{\oplus r}$ , we obtain $E\cong 0_{Q}^{\oplus r}$ , proving
the first assertion of the lemma. The last assertion of the lemma follows from the
triviality of $E$ and the vanishing theorem proven in [B2], Cor. 2.8, because [B2],
Remark 2.11, shows that the linear projection of $Q$ from a general point of $P(V)$

onto a closed hyperplane of $P(V)$ is c-flat in the sense of [B2].

LEMMA 4.2. Let $V$ be a Banach space with countable unconditional basis and
the localizing property and $Q\subset P(V)$ a smooth quadric hypersurface. Let $E$ be a
rank $r$ holomorphic vector bundle on Q. Assume the existence of a line $D\subset Q$ such
that $E|D$ is trivial. Then $E$ is trivial and $h^{1}(Q, E(t))=0$ for every integer $t$ .

PROOF. By Lemmas 2.1 and 3.4 for every line $R\subset Q$ the holomorphic
vector bundle $E|R$ is trivial. Fix $P\in Q$ and let $T_{P}Q\subset P(V)$ the tangent space
to $Q$ at $P$ . Let $E|\{P\}\cong C^{r}$ be the fiber of $E$ at $P$ . Thus $T_{P}Q$ is a codimension
one closed linear projective subspace of $P(V)$ . Set $Y:=Q\cap T_{P}Q$ . Thus $Y$ is an
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irreducible quadric hypersurface of $T_{P}Q$ and $P$ is a singular point of $Y$ . Since $Q$

is smooth, $T_{P}Q$ is tangent to $Q$ only at $P$ . Thus $P$ is the only singular point of $Y$ .
For any line $R\subset Y$ the vector bundle $E|R$ is trivial. Hence by Lemma 4.1 the
vector bundle $E|Y$ is trivial. Consider the exact sequence

$0\rightarrow E(-1)\rightarrow E\rightarrow E|Y\rightarrow 0$ (3)

We have $H^{1}(Q, E(-1))=0$ by [B2], Cor. 2.8, because [B2], Remark 2.11,
shows that the linear projection of $Q$ from a general point of $P(V)$ onto a
closed hyperplane of $P(V)$ is c-flat in the sense of [B2]. Since $E|Y\cong 0_{Y}^{\oplus r}$ ,
$h^{0}(T, E(-1)|T)=0$ for all lines $T\subset Q$ , we obtain $h^{0}(Q, E)=r$ and that the
restriction map $H^{0}(Q, E)\rightarrow H^{0}(Y, E|Y)$ is bijective. In particular we see that
the evaluation map $H^{0}(Q, E)\otimes 0_{Q}\rightarrow E|\{P\}$ is bijective. Since $P$ is an arbitrary
point of $Q$ , this is tme for every point of $Q$ , i.e. $E\cong 0_{Q}^{\oplus r}$ . Since $E$ is trivial and $Q$

is a smooth hypersurface, the last assertion was also proved in [K], Th. 8.7, at
least if $V$ admits smooth partitions of unity.

LEMMA 4.3. Let $V$ be a Banach space with countable unconditional basis and
the localizing property and $Q\subset P(V)$ a quadric hypersurface whose singular locus
is finite-dimensional. Let $E$ be a rank $r$ holomorphic vector bundle on Q. Assume
the existence of a line $D\subset Q$ such that $E|D$ is trivial. Then $E$ is trivial and
$h^{1}(Q, E(t))=0$ for every integer $t$ .

PROOF. By [B2], Cor. 2.8 and Remark 2.11, we have $H^{1}(Q, E(t))=0$ for
every integer $t$ and in particular $H^{1}(Q, E(-1))=0$ . Set $b:=\dim(Sing(Q))$ . The
case $b=-1$ (i.e. $Q$ smooth), is just Lemma 4.2. The case $b=0$ is just Lemma
4.2. Hence we may assume $b\geq 1$ and that the result is true for hyperquadrics
whose singular locus has dimension $b-1$ . Notice that if $V=W\oplus C^{x}$ (topo-
logical direct sum) for some integer $x>0$ and some closed linear subspace $W$ of
the Banach space $V,$ $V$ has the localizing property if and only if $W$ has the
localizing property (see e.g. [K], p. 28). Obviously, the same is tme for the
property of having a countable unconditional basis. The singular set of $Q$ is a b-
dimensional subspace $M$ of $P(V)$ . Let $H\subset P(V)$ be a closed linear subspace not
containing $M$ and $P\in M\backslash M\cap H$ . It is easy to check that $Q\cap H$ is a quadric cone
whose vertex is exactly $H\cap M$ and that $Q$ is a cone with vertex $P$ and $Q\cap H$ as a
basis. By the inductive assumption on $b$ the bundle $E|Q\cap H$ is trivial. Apply the
exact sequence (3) with $Q\cap H$ instead of $Y$ and repeat the proof of Lemma 4.1.

PROOF OF THEOREM 1.1. The last assertion is just [B2], Cor. 2.8 and Remark
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2.11, because the projection of $Q$ from a general points of $P(V)$ onto a closed
hyperplane of $P(V)$ is c-flat in the sense of [B2]. For the same reason for any
finite-codimensional closed linear subspace $A$ of $P(V)$ we have $h^{1}(A, (E|A)(t))=$

$0$ for every integer $t$ . Fix any line $D\subset Q$ . There is an integer $s$ such that $1\leq s\leq r$

and uniquely determined integers $b_{1}>\cdots>b_{s}$ and $m_{j}>0,1\leq i\leq s$ , such that
$m_{1}+\cdots+m_{s}=r$ and $E|D\cong\oplus_{1\leq j\leq s}0_{D}(b_{j})^{\oplus m_{j}}$ (the Harder-Narasimhan filtra-
tion of $E|D$) because $D\cong P^{1}$ , every vector bundle on $P^{1}$ is a direct sum of line
bundles and $\deg(D)=1$ . We will show that $E\cong\oplus_{1\leq j\leq s}0_{Q}(b_{j})^{\oplus m_{j}}$ . By Lemma
4.3 this is true (just twisting with $0_{Q}(-b_{1})$ ) if $s=1$ . Hence we may assume
$s\geq 2$ , i.e. $m_{1}<r$ . Let $b$ be the dimension of the singular locus of $Q$ , with the
convention $b=-1$ if and only if $Q$ is smooth.

(a) First assume $b=0$ . Hence Sing $(Q)$ is one point, $P$ . Take a closed
hyperplane $H$ of $P(V)$ such that $Q\cap H$ is a smooth quadric hypersurface of $H$ .
Let $u:Z\rightarrow Q$ be the blowing-up of $Q$ at $P$ , i.e. the closure of $v^{-1}(Q\backslash \{P\})$ in
$B1_{P}(P(V))$ , where $v:B1_{P}(P(V))\rightarrow P(V)$ is the blowing-up of $P(V)$ at $P$ con-
sidered in [L1], \S 7. $Z$ is a smooth manifold and there is a holomorphic map
$\pi$ : $Z\rightarrow Q\cap H$ such that $Z\cong P(0_{Q\cap H}\oplus O_{Q\cap H}(-1))$ and $\pi$ is the associated $P^{1}-$

bundle. The closed set $u^{-1}(P)$ is a smooth manifold isomorphic to $Q\cap H$ and
$\pi|u^{-1}(P)$ induces an isomorphism between $u^{-1}(P)$ and $Q\cap H$ . Furthermore,
$u^{-1}(P)$ is a Cartier divisor of Z. Set $F:=u^{*}(E)$ . Thus $F$ is a rank $r$ holomorphic
vector bundle on $F$ . Since $E$ is locally trivial, there is an open neighborhood $U$ of
$u^{-1}(P)$ such that $F|U\cong 0_{U}^{\oplus r}$ . Twisting $E$ with $0_{Q}(-b_{1})$ we reduce to the case
$b_{1}=0$ . The construction in the proof of Lemma 4.1 is the same as the con-
struction given in the proof of Proposition 2.4 and this construction commutes
with taking a linear subspace of $H$ . Thus $\pi_{*}(F)$ is a rank $m_{1}$ subbundle of
$E|Q\cap H$ , i.e. the quotient sheaf $(E|Q\cap H)/\pi_{*}(F)$ is a locally free sheaf with
rank $r-m_{1}$ . Fix any finite-dimensional linear subspace $B\subset H$ such that $B\cap H$ is
smooth and $\dim(B)>2r$ . Let $A\subset P(V)$ be the linear span of $B$ and $P$ . The
construction given in the proof of Proposition 2.4 applied to $Q\cap A$ is the same as
the blowing-up just given and hence (calling $\pi_{A}$ the map in that proof and $F_{A}$ the
corresponding bundle) we have $\pi_{*}(F)|B\cong\pi_{A_{*}}(F_{A})$ and $(E|Q\cap H)/\pi_{*}(F)|B\cong$

$(E|B)/\pi_{A_{*}}(F_{A})$ . Thus for any line $R\subset B$ we have $\pi_{*}(F)|R\cong 0_{R}^{\oplus m_{1}}$ and
$((E|Q\cap H)/\pi_{*}(F))|R\cong\oplus_{2\leq j\leq s}0_{D}(b_{j})^{\oplus m_{j}}$ . Hence the Harder-Narasimhan fil-
tration of $\pi_{*}(F)$ has $s^{\prime}=1$ blocks, while the Harder-Narasimhan filtration of
$(E|Q\cap H)/\pi_{*}(F)$ has $s^{\prime}=s-1$ blocks. By the inductive assumption on the
integer $s$ we have $\pi_{*}(F)\cong 0_{Q\cap H}^{\oplus m_{1}}$ and $(E|Q\cap H)/\pi_{*}(F)\cong\oplus_{2\leq j\leq s}0_{Q\cap H}(b_{j})^{\oplus m_{j}}$ .
Since $h^{1}(Q\cap H, 0_{Q\cap H}(t))=0$ for every integer $t$ ([B2], Cor. 2.8 and Remark
2.11), we obtain $h^{1}(Q\cap H, Hom((E|Q\cap H)/\pi_{*}(F)),$ $\pi_{*}(F))=0$ . Hence any ex-
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tension of $(E|Q\cap H)/\pi_{*}(F)$ by $\pi_{*}(F)$ splits. In particular we have $ E|Q\cap H\cong$

$(E|Q\cap H)/\pi_{*}(F)\oplus\pi_{*}(F)$ and hence $E|Q\cap H\cong\oplus_{1\leq j\leq s}0_{Q\cap H}(b_{j})^{\oplus m_{j}}$ . As in
the proof of Lemma 4.2 we obtain $E\cong\oplus_{1\leq j\leq s}O_{Q}(b_{j})^{\oplus m_{j}}$ .

(b) Now assume $Q$ smooth, i.e. $b=-1$ . The proof of Lemma 4.2 and the
part $b=0$ just proven gives a proof of Theorem 1.1 in this case. Now assume
$b>0$ . The proof of Lemma 4.3 gives by induction on $b$ the general case,
concluding the proof.

5. Proof of Theorem 1.2

PROOF OF THEOREM 1.2. By assumption $X=H\cup M$ with $H$ and M. closed
hyperplanes of $P(V)$ and $H\neq M$ . Let $z$ (resp. w) be the homogeneous equation
of $H$ (resp. $M$). At each point $P\in H$ (resp. $P\in M$) the germ of $z$ (resp. w)
generates the ideal sheaf of $H$ (resp. $M$) in $P(V)$ . At each $P\in H\cap M$ the germs
of $z$ and $w$ generate the ideal sheaf of $M\cap H$ in $P(V)$ . Thus we have a Mayer-
Vietoris exact sequence

$0\rightarrow 0_{X}(t)\rightarrow 0_{H}(t)\oplus 0_{M}(t)\rightarrow 0_{H\cap M}(t)\rightarrow 0$ (4)

Since $H^{0}(H, 0_{H}(t))$ (resp. $H^{0}(H\cap M,$ $0_{H\cap M}(t))$ ) is the set of all degree $t$

continuous homogeneous polynomials on $H$ (resp. $H\cap M$), the restriction
map $H^{0}(H, 0_{H}(t))\rightarrow H^{0}(H\cap M, 0_{H\cap M}(t))$ is surjective. Since $h^{1}(H, 0_{H}(t))=$

$h^{1}(M, 0_{M}(t))=0$ for every integer $t$ ([L1], Th. 7.3 and 8.2), the exact sequence
(4) gives $h^{1}(X, 0_{X}(t))=0$ for all $t$ . By [L1], Th. 8.5 and Th. 7.1, there are
two non-increasing sequences of $r$ integers $a_{1}\geq\cdots\geq a_{r}$ and $b_{1}\geq\cdots\geq b_{r}$ such
that $E|H\cong\oplus_{1\leq i\leq r}0_{H}(a_{j})$ and $E|M\cong\oplus_{1\leq i\leq r}0_{H}(b_{j})$ . Since $ E|H\cap M\cong$

$E|M\cap H$ , we have $b_{i}=a_{i}$ for every $i$ .
Since $E$ is locally free, by tensoring (4) with $E$ we obtain an exact sequence

$0\rightarrow E\rightarrow E|H\oplus E|M\rightarrow E|H\cap M\rightarrow 0$ (5)

If $a_{1}=a_{r}$ , set $k:=r$ . If $a_{1}>a_{r}$ , let $k$ be the first integer with $1\leq k\leq r$

and $a_{k}>a_{k+1}$ . By [L1], Th. 8.4, for all integers $t$ , we have
$h^{1}(H, E(t)|H)=h^{1}(M, E(t)|H)=h^{1}(H\cap M, E(t)|H\cap M)=0$ . Notice that
$h^{0}(H, E(-a_{1})|H)=h^{0}(M, E(-a_{1})|M)=h^{0}(H\cap M, E(-a_{1})|H\cap M)=k$ . Fur-
thermore, since $E(t)|H\cong\oplus_{1\leq i\leq r}0_{H}(a_{j}+\iota),$ $E|H\cap M\cong\oplus_{1\leq i\leq r}0_{H\cap M}(a_{j}+t)$

and $h^{1}(H, O_{H}(z))=0$ for every integer $z$ , the restriction map $ H^{0}(H, E(t)|H)\rightarrow$

$H^{0}(H\cap M, E(t))$ is surjective. Hence from (6) we obtain $h^{1}(X, E(t))=0$ for
every integer $t$ and $h^{0}(X, E(-a_{1}))=k$ . The last equality and the definition of the
integer $k$ imply that for any line $D\subset X$ the restriction map $ H^{0}(C, E(-a_{1}))\rightarrow$
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$H^{0}(D, E(-a_{1})|D)$ is an isomorphism. Since any point of $X$ is contained in a line
contained in $X$ , we obtain that the natural map $H^{0}(X, E(-a_{1}))\otimes 0_{X}$ is injective
and it has as image a rank $k$ trivial subbundle, $F$ , of $E(-a_{1})$ . If $k=r$ we obtain
$E(-a_{1})\cong 0_{X}^{\oplus a}$ ‘, proving the theorem in this case. If $k<r$ , we obtain that
$E/F(a_{I})$ is a rank $r-k$ vector bundle such that its restriction to any line $D$ of $X$

has splitting type $a_{k+1}\geq\cdots\geq a_{r}$ . By induction on the rank we obtain $ E/F(a_{1})\cong$

$\oplus_{k+1\leq l\leq r}0_{X}(a_{l})$ . Since $h^{1}(X, 0_{X}(t))=0$ for every $t\in Z$ , every extension of
$E/F(a_{1})$ by $F(a_{1})$ splits. Thus $E\cong F(a_{1})\oplus E/F(a_{1})\cong\oplus_{1\leq l\leq r}0_{X}(a_{j})$ , as wanted.
The uniqueness part in the statement of Theorem 1.2 is obvious because for any
line $D\subset X$ , the non-increasing sequence of $r$ integers $a_{1}\geq\cdots\geq a_{r}$ is the splitting
type of $E|D$ .
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