HOLOMORPHIC VECTOR BUNDLES ON QUADRIC HYPERSURFACES OF INFINITE-DIMENSIONAL PROJECTIVE SPACES

By
E. Ballico

Abstract

Here we prove the following result and a few related statements. Let V be a Banach space with countable unconditional basis and the localizing property, $Q \subset \boldsymbol{P}(V)$ a quadric hypersurface with finite-dimensional singular locus and E a holomorphic vector bundle of finite rank on Q. Then $E \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{Q}\left(a_{i}\right)$ for some integers a_{i} and $h^{1}(Q, E(t))=0$ for every integer t.

1. Introduction

In [L1], Th. 8.5 and Th. 8.1, there is a complete classification of all holomorphic vector bundles of finite rank on $\boldsymbol{P}(V)$ when V is a "good" infinitedimensional Banach space (e.g. a separable Hilbert space). In this paper we consider holomorphic vector bundles on quadric hypersurfaces of $\boldsymbol{P}(V)$ and prove the following result.

Theorem 1.1. Let V be a Banach space with countable unconditional basis and the localizing property and $Q \subset \boldsymbol{P}(V)$ a quadric hypersurface. Assume either Q smooth or that its singular locus is finite-dimensional. Let E be a rank r holomorphic vector bundle on Q. Then there are uniquely determined integers $a_{1} \geq \cdots \geq a_{r}$ such that $E \cong \boldsymbol{O}_{Q}\left(a_{1}\right) \oplus \cdots \oplus \boldsymbol{O}_{Q}\left(a_{r}\right)$. Furthermore, $h^{1}(Q, E(t))=0$ for every integer t.

To avoid any misunderstanding we stress that in this paper every holomorphic vector bundle is assumed to be locally holomorphically trivial in the sense of [L1],

[^0]p. 490. Hence in general our assumptions on holomorphic vector bundles are stronger than the ones in [L1]. The last assertion of Theorem 1.1 was proved (for an arbitrary hypersurface of $\boldsymbol{P}(\boldsymbol{V})$) in [B2]. The proof of Theorem 1.1 given in section 4 use [L1] and [L2] in an essential way; even paper [B2] which will use several times in the proof of the splitting of E given in section 4 depends heavily from [L1] and [L2].

In section 5 we will also prove in a completely different way the following more elementary result.

Theorem 1.2. Fix an integer $r \geq 1$. Let V be a Banach space with countable unconditional basis and the localizing property and $X \subset \boldsymbol{P}(V)$ a reducible but reduced quadric hypersurface. Let E be a holomorphic rank r vector bundle on X. Then there is a uniquely determined non-increasing sequence of r integers $a_{1} \geq \cdots \geq a_{r}$ such that $E \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{X}\left(a_{i}\right)$. Furthermore, $h^{1}(X, E(t))=0$ for every integer t.

In section 3 we will consider quadric hypersurfaces of $\boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$ (see Remarks 3.1, 3.2 and 3.3). In section two we collect several results easily obtained from [T] and $[\mathrm{S}]$ and which are related to $\boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$.

This research was partially supported by MIUR and GNSAGA of INdAM (Italy). I want to thank the referee for very stimulating suggestions.

2. Finite-Dimensional Results

We will use the following result $([\mathrm{T}], \mathrm{Th} .1$ at p. 1199, or $[\mathrm{S}]$, Main Theorem).
Lemma 2.1. Fix an integer $r \geq 1$. Let $\boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} \subset \boldsymbol{P}^{n+1} \subset \cdots$ be an infinite tower of projective spaces, i.e. for any $n \geq 1$ see \boldsymbol{P}^{n} as a hyperplane H_{n} on \boldsymbol{P}^{n+1}. Let $E_{n}, n \geq 1$, be a rank r vector bundle on \boldsymbol{P}^{n} such that $E_{n+1} \mid H_{n} \cong E_{n}$ for all n. Then there are integers a_{1}, \ldots, a_{r} such that $E_{n} \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{P^{n}}\left(a_{i}\right)$ for every n.

Propositiona 2.2. Fix an integer $r \geq 1$. Let $\boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} \subset$ $\boldsymbol{P}^{n+1} \subset \cdots$ be an infinite tower of projective spaces, i.e. for any $n \geq 1$ see \boldsymbol{P}^{n} as a hyperplane H_{n} on \boldsymbol{P}^{n+1}. Let $Q_{n} \subset \boldsymbol{P}^{n+1}, n \geq 2$, be a smooth quadric hypersurface such that $Q_{n} \mid H_{n}=Q_{n-1}$ for all $n \geq 3$. Let $E_{n}, n \geq 1$, be a rank r vector bundle on Q_{n} such that $E_{n+1} \mid H_{n} \cong E_{n}$ for all n. Then there are integers a_{1}, \ldots, a_{r} such that $E_{n} \cong \oplus_{1 \leq i \leq r} \boldsymbol{O}_{Q_{n}}\left(a_{i}\right)$ for every n.

Proof. By [T], Lemma 3.2 at p. 1201, the tower of vector bundles E_{n},
$n \geq 1$, is level, i.e. for every $n \geq 3$ and any two lines D, R contained in Q_{n}, the vector bundles $E_{n} \mid D$ and $E_{n} \mid R$ have the same splitting type; with the terminology of [OSS], §3, and of [B1] each vector bundle E_{n} is uniform. If $n \geq 2 r+3$, then every uniform rank r vector bundle on Q_{n} is isomorphic to a direct sum of r lines bundles, say $E_{n} \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{Q_{n}}\left(a_{i}\right)$ with $a_{1} \geq \cdots \geq a_{r}$ ([B1], Th. 1). Since $Q_{n} \mid H_{n}=Q_{n-1}$ for all $n \geq 3$, the non-increasing sequence of integer $a_{1} \geq \cdots \geq a_{r}$ is the same for all n.

Lemma 2.3. Fix integers r and a such that $r \geq 1$. Let $S \subset \boldsymbol{P}^{3}$ be an irreducible quadric cone and call P its vertex. Let E be a rank r vector bundle on S such that for every line D with $D \subset S$ we have $E \mid D \cong \boldsymbol{O}_{D}(a)^{\oplus r}$. Then $E \cong \boldsymbol{O}_{S}(a)^{\oplus r}$.

Proof. Let $u: A \rightarrow S$ be the blowing-up of S at P. Set $h:=u^{-1}(P)$ and let f be the strict transform in A of any line $D \subset S$. Thus A is smooth rational surface isomorphic to the Hirzebruch surface F_{2} and h is smooth and rational. There is a ruling $\pi: A \rightarrow \boldsymbol{P}^{1}$ and we may take as f any fiber of the ruling π. We have $\operatorname{Pic}(A) \cong \boldsymbol{Z}^{\oplus 2}$ and we may take h and f as a basis of $\operatorname{Pic}(A)$. We have $h^{2}=-2, h \cdot f=1$ and $f^{2}=0$. We have $\boldsymbol{O}_{A}(h+2 f)=u^{*}\left(\boldsymbol{O}_{S}(1)\right)$. Set $F:=$ $u^{*}(E)$. The condition $E \mid D \cong \boldsymbol{O}_{D}(a)^{\oplus r}$ is equivalent to say that for every fiber T of π the vector bundle $F \mid T$ is the direct sum of r line bundles of degree a. In particular the splitting type of the restriction of F is the same for all fibers of π, i.e. F is a π-uniform bundle of a π-uniform bundle in the sense of Ishimura ([I]). Since $F=u^{*}(E)$ and E is locally trivial around P, there is an open neighborhood U of h in A such that $F \mid U$ is trivial. Since $F \mid U$ is trivial and $u_{*}\left(\boldsymbol{O}_{A}\right)=\boldsymbol{O}_{S}$, we have $E \cong u_{*}(F)$. If $r=1$ the triviality of $F \mid h$ implies the existence of an integer b such that $F \cong \boldsymbol{O}_{A}(b h+2 b f)$. Thus $E=u_{*}(F) \cong \boldsymbol{O}_{S}(b)$. Since $E \mid D$ has degree a, we have $b=a$, proving the case $r=1$. Fix a smooth curve $C \in|h+2 f|$. Thus $C \cong \boldsymbol{P}^{1}, C \cap h=\varnothing, C$ is a section of π, u is an isomorphism in a neighborhood of C and $u(C)$ is a smooth conic contained is S. Now assumer $r \geq 2$. For every fiber T of π the vector bundle $F(-a C) \mid T$ is trivial. Thus $h^{0}(T, F(-a C) \mid T)=r$ and $h^{1}(T, F(-a h) \mid T)=0$. Thus $\pi_{*}(F(-a C))$ is a rank r vector bundle on \boldsymbol{P}^{1} and the natural map $\pi^{*}\left(\pi_{*}(F(-a C))\right) \rightarrow F(-a C)$ is an isomorphism ([OSS], Basechange theorem at p. 11). Since $\pi^{*}(B) \mid h \cong B$ for any vector bundle B on \boldsymbol{P}^{1} and $F \mid h$ is trivial, we obtain $F \cong \boldsymbol{O}_{A}(a h+2 a f)^{\oplus r}$. Thus $E \cong u_{*}(F) \cong \boldsymbol{O}_{S}(a)^{\oplus r}$, proving the lemma.

Proposition 2.4. Fix integers r, b, n with $r \geq 1, b \geq-1$ and $n \geq 2 r+5+b$. Let $S \subset \boldsymbol{P}^{n}$ be an irreducible quadric hypersurface of rank $n-b$, i.e. such that $\operatorname{Sing}(Q)$ has dimension $b-1$. Let E be a rank r vector bundle on S. Assume the
existence of integers a_{1}, \ldots, a_{r} such that $E \mid D \cong \oplus_{1 \leq i \leq r} \boldsymbol{O}_{D}\left(a_{i}\right)$ for every line $D \subset S$. Then $E \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{S}\left(a_{i}\right)$.

Proof. We stress that the proofs in [B1] are just adaptations to the quadric case and to some more general subvarieties of \boldsymbol{P}^{n} of the results proved in [EF] for \boldsymbol{P}^{n}. The case $b=-1$, i.e. the case S smooth, is [B1], Th. 1. Thus we may assume $b \geq 0$, i.e. we may assume that S is a quadric cone and assume that the result true for the integer $b^{\prime}:=b-1$. Let W be the vertex of S. Thus W is a b dimensional linear space. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \boldsymbol{I}_{\boldsymbol{S}}(t) \rightarrow \boldsymbol{O}_{\boldsymbol{P}^{n}}(t) \rightarrow \boldsymbol{O}_{S}(t) \rightarrow 0 \tag{1}
\end{equation*}
$$

Since the ideal sheaf \boldsymbol{I}_{S} of S in \boldsymbol{P}^{n} is isomorphic to $\boldsymbol{O}_{\boldsymbol{P}^{n}}(-2)$, from (1) and the known cohomology of line bundles on \boldsymbol{P}^{n} we obtain $h^{1}\left(\boldsymbol{P}^{n}, \boldsymbol{I}_{S}(t)\right)=$ $h^{i}\left(S, \boldsymbol{O}_{S}(t)\right)=0$ for all integers i, t with $1 \leq i \leq n-1$. This is equivalent to say that S is an arithmetically Cohen-Macaulay subvariety of \boldsymbol{P}^{n}. Let H be a general hyperplane of \boldsymbol{P}^{n}. Set $Y:=S \cap H$. Hence $Y \subset H$ is an irreducible quadric cone and $W \cap H$ is the vertex of Y. By the inductive assumption on $b E \mid Y \cong$ $\oplus_{1 \leq i \leq r} \boldsymbol{O}_{Y}\left(a_{i}\right)$. We order the integers a_{1}, \ldots, a_{r} so that $a_{1} \geq \cdots \geq a_{r}$. If $a_{r}=a_{1}$, set $k=r$. If $a_{r}<a_{1}$, let k be the first integer such that $1 \leq k<r$ and $a_{k}>a_{k+1}$. Since $\operatorname{dim}(Y) \geq 2$, the first part of the proof gives $h^{1}(Y,(E \mid Y)(t))=0$ for all integers t. Since the conormal bundle of Y in S is isomorphic to $O_{Y}(-1)$, from [B1], Prop. 1, we obtain $h^{1}(S, E(t))=0$ for every $t \in \boldsymbol{Z}$. From the cohomology exact sequence associated to the exact sequence

$$
\begin{equation*}
0 \rightarrow E(t-1) \rightarrow E(t) \rightarrow E(t) \mid Y \rightarrow 0 \tag{2}
\end{equation*}
$$

we obtain $h^{0}\left(S, E\left(-a_{1}\right)\right)=k$ and that the restriction map $H^{0}\left(S, E\left(-a_{1}\right)\right) \rightarrow$ $H^{0}\left(Y, E\left(-a_{1}\right) \mid Y\right)$ is bijective. Notice that $H^{0}\left(Y, E\left(-a_{1}\right) \mid Y\right)$ spans a trivial rank k factor of $E\left(-a_{1}\right) \mid Y$. Moving H between all hyperplanes not containing W we obtain that $H^{0}\left(S, E\left(-a_{1}\right)\right)$ spans a trivial rank subbundle F of $E\left(-a_{1}\right)$. If $k=r$, this implies $E \cong F\left(a_{1}\right)$, i.e. $E \cong \bigoplus_{1 \leq i \leq r} O_{S}\left(a_{i}\right)$, proving the result in this case. Now assume $k<r$. For every line $D \subset S$ we have $E / F\left(a_{1}\right) \mid D \cong$ $\bigoplus_{k+1 \leq i \leq r} \boldsymbol{O}_{D}\left(a_{i}\right)$. Hence by induction on the rank r we may assume $E / F\left(a_{1}\right) \cong$ $\oplus_{k+1 \leq i \leq r} \boldsymbol{O}_{S}\left(a_{i}\right)$. Since $h^{1}\left(S, \boldsymbol{O}_{S}(t)\right)=0$ for every t, every extension of $E / F\left(a_{1}\right)$ by $F\left(a_{1}\right)$ splits. Thus $E \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{S}\left(a_{i}\right)$.

3. Countable Vector Space

In this section we consider $\boldsymbol{C}^{(\boldsymbol{N})}$ equipped with the finite-dimensional topology.

Remark 3.1. For every integer $n \geq 1$ consider the embedding of C^{n} into $\boldsymbol{C}^{(\boldsymbol{N})}$ made sending $\left(z_{1}, \ldots, z_{n}\right)$ into $\left(z_{1}, \ldots, z_{n}, 0, \ldots\right)$. In this way we obtain an infinite countable tower of projective spaces $\boldsymbol{P}^{0} \subset \boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} \subset$ $\boldsymbol{P}^{n+1} \subset \cdots \subset \boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$. Fix an integer $r>0$. Let E be a rank r holomorphic vector bundle on $\boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$. Set $E_{n}:=E \mid \boldsymbol{P}^{n}$. Each E_{n} is a holomorphic vector bundle on \boldsymbol{P}^{n} and $E_{n+1} \mid \boldsymbol{P}_{n} \cong E_{n}$ for all n. Conversely, the topology of $\boldsymbol{C}^{(\boldsymbol{N})}$ is such that given any tower $E_{n}, n \geq 1$, of holomorphic rank r vector bundles with the condition $E_{n+1} \mid \boldsymbol{P}_{n} \cong E_{n}$ for all n there is a unique (up to isomorphisms) rank r vector bundle E on $\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)$ such that $E_{n} \cong E \mid \boldsymbol{P}^{n}$ for all n. By Lemma 2.1 we have $E \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{\boldsymbol{P}\left(\boldsymbol{C}^{(N)}\right)}\left(a_{i}\right)$ for some integers a_{1}, \ldots, a_{r}.

From now on in this section we fix the tower $\boldsymbol{P}^{0} \subset \boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} \subset$ $\boldsymbol{P}^{n+1} \subset \cdots \subset \boldsymbol{P}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$ introduced in Remark 3.1.

Remark 3.2. Every homogeneous polynomial on $\boldsymbol{C}^{(\boldsymbol{N})}$ is continuous ([D], Ex. 1.63). Hence to give a degree d hypersurface (even not reduced or not irreducible) X of $\boldsymbol{C}^{(\boldsymbol{N})}$ is equivalent to give for all integers $n \geq 1$ a degree d hypersurface X_{n-1} of \boldsymbol{P}^{n}. Let E be a rank r holomorphic vector bundle on X. For all $n \geq 0$ set $E_{n}:=E \mid X_{n}$. Each E_{n} is a holomorphic vector bundle on X_{n} and $E_{n+1} \mid X_{n} \cong E_{n}$ for all n. Conversely, the topology of $C^{(N)}$ is such that given any tower $E_{n}, n \geq 0$, of holomorphic rank r vector bundles with the condition $E_{n+1} \mid X_{n} \cong E_{n}$ for all n there is a unique (up to isomorphisms) rank r vector bundle E on X such that $E_{n} \cong E \mid X_{n}$ for all n.

Remark 3.3. By [G], Th. 1 at p. 63, every quadratic form on $\boldsymbol{C}^{(\boldsymbol{N})}$ may be diagonalized. Hence any quadratic form Q on $C^{(\boldsymbol{N})}$ is uniquely determined, up to the action of $\mathrm{GL}\left(\boldsymbol{C}^{(\boldsymbol{N})}\right)$, by a pair (α, β), where α is either a non-negative integer or the simbol ∞ and β is either a non-negative integer or the symbol ∞ and if $a \neq \infty$, then $b=\infty: \alpha$ is the rank of Q and β is its corank, i.e. β is the dimension of the maximal linear subspace A of $\boldsymbol{C}^{(\boldsymbol{N})}$ such that $Q(x, y)=0$ for every $x \in A$ and every $y \in \boldsymbol{C}^{(\boldsymbol{N})}$. Conversely, any such pair (α, β) is associated to a quadratic form on $\boldsymbol{C}^{(\boldsymbol{N})}$; if α is finite, take a diagonal form $Q=\sum_{1 \leq i \leq \alpha} z_{i}^{2}$; if β is finite take $Q=\sum_{i \geq \beta+1} z_{i}^{2}$; if $(\alpha, \beta)=(\infty, \infty)$ take $Q=\sum_{i \geq 1} z_{2 i}^{2}$. The quadratic form Q associated to the pair (α, β) is non-degenerate if and only if $\beta=0$.

Lemma 3.4. Let V be an infinite dimensional complex vector space and Q an irreducible quadric hypersurface of $\boldsymbol{P}(V)$. Fix lines A, B on Q. Then there are two chains of projective spaces $A_{1} \subset A_{2} \subset \cdots \subset Q$ and $B_{1} \subset B_{2} \subset \cdots Q$ such that
$\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(B_{n}\right)=n$ for all $n, A=A_{1}, B=B_{1}$ and $A_{i} \cap B_{i}$ containing a line for $i \gg 0$.

Proof. Taking instead of V any countable infinite vector subspace of V containing the vector subspace of dimension at most 4 associated to the linear span of $A \cup B$, we reduce to the case $V=\boldsymbol{C}^{(\boldsymbol{N})}$. Since Q is diagonalizable, it is easy to check that both A and B are contained in an infinite increasing tower of projective spaces. If Q is singular and its singular set $\operatorname{Sing}(Q)$ is at least a line, then taking a join of any two such towers of projective spaces with a line, then we obtain two towers $A_{1} \subset A_{2} \subset \cdots \subset Q$ and $B_{1} \subset B_{2} \subset \cdots Q$ such that $\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(B_{n}\right)=n$ for all $n, A=A_{1}, B=B_{1}$ and $A_{i} \cap B_{i}$ containing a line for $i \gg 0$. Call $(\alpha(Q), \beta(Q))$ the invariants associated to Q in Remark 3.2. We have solved all cases except the ones with $0 \leq \beta(Q) \leq 1$. We will do the case $\beta(Q)=0$ (i.e. Q smooth) leaving the very similar case $\beta(Q)=1$ to the reader. Up to a linear transformation we may assume that $Q=\left\{\sum_{i \geq 1} z_{i}^{2}\right\}$. Let n be any positive integer such that both A and B are contained in the projectivization of the linear subspace $W=C^{n}$ of $\boldsymbol{C}^{(\boldsymbol{N})}$ given by $z_{i}=0$ for all $i>n$. We may change the coordinates of $\boldsymbol{C}^{(N)}$ keeping fixed the ones of W in such a way in the new homogeneous coordinates $z_{1}, \ldots, z_{n}, x_{i}, y_{i}, i \geq 1, Q=$ $\left\{\sum_{1 \leq i \leq n} z_{i}^{2}+\sum_{i \geq 1} x_{i} y_{i}=0\right\}$. Take as $A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset Q$ (resp. $B_{1} \subset$ $B_{2} \subset \cdots \subset B_{k} \subset Q$) any tower obtained from A (resp. B) taking the cone with vertex $x_{i}=0$ for $1 \leq i \leq k-1, y_{j}=0$.

4. Proof of Theorem $\mathbf{1 . 1}$

Lemma 4.1. Let V be a Banach space with countable unconditional basis and the localizing property and $Q \subset \boldsymbol{P}(V)$ a quadric hypersurface whose singular locus is one point. Let E be a rank r holomorphic vector bundle on Q. Assume the existence of a line $D \subset Q$ such that $E \mid D$ is trivial. Then E is trivial and $h^{1}(Q, E(t))=0$ for every integer t.

Proof. Let P be the singular point of Q. Take a closed hyperplane H of $\boldsymbol{P}(V)$ such that $Q \cap H$ is a smooth quadric hypersurface of H. Let $u: Z \rightarrow Q$ be the blowing-up of Q at P, i.e. the closure of $v^{-1}(Q \backslash\{P\})$ in $\mathrm{Bl}_{P}(\boldsymbol{P}(V))$, where $v: \mathrm{Bl}_{P}(\boldsymbol{P}(V)) \rightarrow \boldsymbol{P}(V)$ is the blowing-up of $\boldsymbol{P}(V)$ at P considered in [L1], §7. Z is a smooth manifold and there is a holomorphic map $\pi: Z \rightarrow Q \cap H$ such that $Z \cong \boldsymbol{P}\left(\boldsymbol{O}_{Q \cap H} \oplus \boldsymbol{O}_{Q \cap H}(-1)\right)$ and π is the associated \boldsymbol{P}^{1}-bundle. The closed set $u^{-1}(P)$ is a smooth manifold isomorphic to $Q \cap H$ and $\pi \mid u^{-1}(P)$ induces an
isomorphism between $u^{-1}(P)$ and $Q \cap H$. Furthermore, $u^{-1}(P)$ is a Cartier divisor of Z. Set $F:=u^{*}(E)$. Thus F is a rank r holomorphic vector bundle on F. Since E is locally trivial, there is an open neighborhood U of $u^{-1}(P)$ such that $F \mid U \cong \boldsymbol{O}_{U}^{\oplus r}$.

Claim: The sheaf $\pi_{*}(F)$ is a locally free sheaf on $Q \cap H$ with $\operatorname{rank}\left(\pi_{*}(F)\right)=r$ and the natural map $\alpha: \pi^{*}\left(\pi_{*}(F)\right) \rightarrow F$ is an isomorphism.

Proof. By [H], Example 5 at p. 38, Th. 1^{\prime} at p. 46 and Th. 2 at p. 50, the sheaf $\pi_{*}(F)$ is pseudo-coherent in the sense of $[\mathrm{H}]$; here we use that $Q \cap H$ is locally paracompact. By Lemmas 2.1 and 3.4 for every line $R \subset Q$ we have $E \mid R \cong \boldsymbol{O}_{R}^{\oplus r}$. Hence for every fiber T of π we have $F \mid T \cong \boldsymbol{O}_{T}^{\oplus r}$. The morphism π is a locally trivial \boldsymbol{P}^{1}-bundle and in particular it has locally many sections. Fix one such section σ, a point $A \in M \cap H$ and an open neighborhood Ω of A on which σ is defined and such that $\pi^{-1}(\Omega) \cong \Omega \times \boldsymbol{P}^{1}$. Since F is locally trivial, we may also assume that F is trivial to arbitrary order in the sense of [L1], line 10 of p. 505. Hence we may apply [L1], Prop. 5.7, and obtain that $\pi_{*}(F)$ is a rank r vector bundle on U; notice that [L1], Prop. 5.7, states that $\pi_{*}(F)$ is holomorphically locally trivial. Furthermore, by [L1], Prop. 5.7, the map α is fiberwise injective with a subbundle of F as image. Since $\operatorname{rank}\left(\pi_{*}(F)\right)=\operatorname{rank}(F), \alpha$ is an isomorphism, proving the claim.

Since F is trivial in an open neighborhood of $u^{-1}(P)$ and $\pi^{*}\left(\pi_{*}(F)\right) \mid$ $u^{-1}(P) \cong \pi_{*}(F), \pi_{*}(F)$ is trivial. Hence the bijectivity of α implies the triviality of F. We have $\pi_{*}\left(\boldsymbol{O}_{Z}\right)=\boldsymbol{O}_{Q}$ and $\pi_{*}\left(\left(\pi^{*}(A)\right) \cong A\right.$ for every holomorphic vector bundle A on Q. Thus $E \cong \pi_{*}(F)$. Since $F \cong \boldsymbol{O}_{Z}^{\oplus r}$, we obtain $E \cong \boldsymbol{O}_{Q}^{\oplus r}$, proving the first assertion of the lemma. The last assertion of the lemma follows from the triviality of E and the vanishing theorem proven in [B2], Cor. 2.8, because [B2], Remark 2.11, shows that the linear projection of Q from a general point of $\boldsymbol{P}(V)$ onto a closed hyperplane of $\boldsymbol{P}(V)$ is c-flat in the sense of [B2].

Lemma 4.2. Let V be a Banach space with countable unconditional basis and the localizing property and $Q \subset \boldsymbol{P}(V)$ a smooth quadric hypersurface. Let E be a rank r holomorphic vector bundle on Q. Assume the existence of a line $D \subset Q$ such that $E \mid D$ is trivial. Then E is trivial and $h^{1}(Q, E(t))=0$ for every integer t.

Proof. By Lemmas 2.1 and 3.4 for every line $R \subset Q$ the holomorphic vector bundle $E \mid R$ is trivial. Fix $P \in Q$ and let $T_{P} Q \subset \boldsymbol{P}(V)$ the tangent space to Q at P. Let $E \mid\{P\} \cong C^{r}$ be the fiber of E at P. Thus $T_{P} Q$ is a codimension one closed linear projective subspace of $\boldsymbol{P}(V)$. Set $Y:=Q \cap T_{P} Q$. Thus Y is an
irreducible quadric hypersurface of $T_{P} Q$ and P is a singular point of Y. Since Q is smooth, $T_{P} Q$ is tangent to Q only at P. Thus P is the only singular point of Y. For any line $R \subset Y$ the vector bundle $E \mid R$ is trivial. Hence by Lemma 4.1 the vector bundle $E \mid Y$ is trivial. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow E(-1) \rightarrow E \rightarrow E \mid Y \rightarrow 0 \tag{3}
\end{equation*}
$$

We have $H^{1}(Q, E(-1))=0$ by [B2], Cor. 2.8, because [B2], Remark 2.11, shows that the linear projection of Q from a general point of $\boldsymbol{P}(V)$ onto a closed hyperplane of $\boldsymbol{P}(V)$ is c-flat in the sense of [B2]. Since $E \mid Y \cong \boldsymbol{O}_{Y}^{\oplus r}$, $h^{0}(T, E(-1) \mid T)=0$ for all lines $T \subset Q$, we obtain $h^{0}(Q, E)=r$ and that the restriction map $H^{0}(Q, E) \rightarrow H^{0}(Y, E \mid Y)$ is bijective. In particular we see that the evaluation map $H^{0}(Q, E) \otimes \boldsymbol{O}_{Q} \rightarrow E \mid\{P\}$ is bijective. Since P is an arbitrary point of Q, this is true for every point of Q, i.e. $E \cong \boldsymbol{O}_{Q}^{\oplus r}$. Since E is trivial and Q is a smooth hypersurface, the last assertion was also proved in [K], Th. 8.7, at least if V admits smooth partitions of unity.

Lemma 4.3. Let V be a Banach space with countable unconditional basis and the localizing property and $Q \subset \boldsymbol{P}(V)$ a quadric hypersurface whose singular locus is finite-dimensional. Let E be a rank r holomorphic vector bundle on Q. Assume the existence of a line $D \subset Q$ such that $E \mid D$ is trivial. Then E is trivial and $h^{1}(Q, E(t))=0$ for every integer t.

Proof. By [B2], Cor. 2.8 and Remark 2.11, we have $H^{1}(Q, E(t))=0$ for every integer t and in particular $H^{1}(Q, E(-1))=0$. Set $b:=\operatorname{dim}(\operatorname{Sing}(Q))$. The case $b=-1$ (i.e. Q smooth), is just Lemma 4.2. The case $b=0$ is just Lemma 4.2. Hence we may assume $b \geq 1$ and that the result is true for hyperquadrics whose singular locus has dimension $b-1$. Notice that if $V=W \oplus C^{x}$ (topological direct sum) for some integer $x>0$ and some closed linear subspace W of the Banach space V, V has the localizing property if and only if W has the localizing property (see e.g. $[\mathrm{K}], \mathrm{p} .28$). Obviously, the same is true for the property of having a countable unconditional basis. The singular set of Q is a b dimensional subspace M of $\boldsymbol{P}(V)$. Let $H \subset \boldsymbol{P}(V)$ be a closed linear subspace not containing M and $P \in M \backslash M \cap H$. It is easy to check that $Q \cap H$ is a quadric cone whose vertex is exactly $H \cap M$ and that Q is a cone with vertex P and $Q \cap H$ as a basis. By the inductive assumption on b the bundle $E \mid Q \cap H$ is trivial. Apply the exact sequence (3) with $Q \cap H$ instead of Y and repeat the proof of Lemma 4.1.

Proof of Theorem 1.1. The last assertion is just [B2], Cor. 2.8 and Remark
2.11, because the projection of Q from a general points of $\boldsymbol{P}(V)$ onto a closed hyperplane of $\boldsymbol{P}(V)$ is c-flat in the sense of [B2]. For the same reason for any finite-codimensional closed linear subspace A of $\boldsymbol{P}(V)$ we have $h^{1}(A,(E \mid A)(t))=$ 0 for every integer t. Fix any line $D \subset Q$. There is an integer s such that $1 \leq s \leq r$ and uniquely determined integers $b_{1}>\cdots>b_{s}$ and $m_{j}>0,1 \leq i \leq s$, such that $m_{1}+\cdots+m_{s}=r$ and $E \mid D \cong \bigoplus_{1 \leq j \leq s} \boldsymbol{O}_{D}\left(b_{j}\right)^{\oplus m_{j}}$ (the Harder-Narasimhan filtration of $E \mid D)$ because $D \cong \boldsymbol{P}^{1}$, every vector bundle on \boldsymbol{P}^{1} is a direct sum of line bundles and $\operatorname{deg}(D)=1$. We will show that $E \cong \bigoplus_{1 \leq j \leq s} \boldsymbol{O}_{Q}\left(b_{j}\right)^{\oplus m_{j}}$. By Lemma 4.3 this is true (just twisting with $\boldsymbol{O}_{Q}\left(-b_{1}\right)$) if $s=1$. Hence we may assume $s \geq 2$, i.e. $m_{1}<r$. Let b be the dimension of the singular locus of Q, with the convention $b=-1$ if and only if Q is smooth.
(a) First assume $b=0$. Hence $\operatorname{Sing}(Q)$ is one point, P. Take a closed hyperplane H of $\boldsymbol{P}(V)$ such that $Q \cap H$ is a smooth quadric hypersurface of H. Let $u: Z \rightarrow Q$ be the blowing-up of Q at P, i.e. the closure of $v^{-1}(Q \backslash\{P\})$ in $\mathrm{Bl}_{P}(\boldsymbol{P}(V))$, where $v: \mathrm{Bl}_{P}(\boldsymbol{P}(V)) \rightarrow \boldsymbol{P}(V)$ is the blowing-up of $\boldsymbol{P}(V)$ at P considered in [L1], §7. Z is a smooth manifold and there is a holomorphic map $\pi: Z \rightarrow Q \cap H$ such that $Z \cong \boldsymbol{P}\left(\boldsymbol{O}_{Q \cap H} \oplus O_{Q \cap H}(-1)\right)$ and π is the associated \boldsymbol{P}^{1} bundle. The closed set $u^{-1}(P)$ is a smooth manifold isomorphic to $Q \cap H$ and $\pi \mid u^{-1}(P)$ induces an isomorphism between $u^{-1}(P)$ and $Q \cap H$. Furthermore, $u^{-1}(P)$ is a Cartier divisor of Z. Set $F:=u^{*}(E)$. Thus F is a rank r holomorphic vector bundle on F. Since E is locally trivial, there is an open neighborhood U of $u^{-1}(P)$ such that $F \mid U \cong \boldsymbol{O}_{U}^{\oplus r}$. Twisting E with $\boldsymbol{O}_{Q}\left(-b_{1}\right)$ we reduce to the case $b_{1}=0$. The construction in the proof of Lemma 4.1 is the same as the construction given in the proof of Proposition 2.4 and this construction commutes with taking a linear subspace of H. Thus $\pi_{*}(F)$ is a rank m_{1} subbundle of $E \mid Q \cap H$, i.e. the quotient sheaf $(E \mid Q \cap H) / \pi_{*}(F)$ is a locally free sheaf with rank $r-m_{1}$. Fix any finite-dimensional linear subspace $B \subset H$ such that $B \cap H$ is smooth and $\operatorname{dim}(B)>2 r$. Let $A \subset \boldsymbol{P}(V)$ be the linear span of B and P. The construction given in the proof of Proposition 2.4 applied to $Q \cap A$ is the same as the blowing-up just given and hence (calling π_{A} the map in that proof and F_{A} the corresponding bundle) we have $\pi_{*}(F) \mid B \cong \pi_{A_{*}}\left(F_{A}\right)$ and ($\left.E \mid Q \cap H\right) / \pi_{*}(F) \mid B \cong$ $(E \mid B) / \pi_{A_{*}}\left(F_{A}\right)$. Thus for any line $R \subset B$ we have $\pi_{*}(F) \mid R \cong \boldsymbol{O}_{R}^{\oplus m_{1}}$ and $\left((E \mid Q \cap H) / \pi_{*}(F)\right) \mid R \cong \bigoplus_{2 \leq j \leq s} \boldsymbol{O}_{D}\left(b_{j}\right)^{\oplus m_{j}}$. Hence the Harder-Narasimhan filtration of $\pi_{*}(F)$ has $s^{\prime}=1$ blocks, while the Harder-Narasimhan filtration of $(E \mid Q \cap H) / \pi_{*}(F)$ has $s^{\prime}=s-1$ blocks. By the inductive assumption on the integer s we have $\pi_{*}(F) \cong \boldsymbol{O}_{Q \cap H}^{\oplus m_{1}}$ and $(E \mid Q \cap H) / \pi_{*}(F) \cong \bigoplus_{2 \leq j \leq s} \boldsymbol{O}_{Q \cap H}\left(b_{j}\right)^{\oplus m_{j}}$. Since $h^{1}\left(Q \cap H, \boldsymbol{O}_{Q \cap H}(t)\right)=0$ for every integer t ([B2], Cor. 2.8 and Remark 2.11), we obtain $h^{1}\left(Q \cap H, \operatorname{Hom}\left((E \mid Q \cap H) / \pi_{*}(F)\right), \pi_{*}(F)\right)=0$. Hence any ex-
tension of $(E \mid Q \cap H) / \pi_{*}(F)$ by $\pi_{*}(F)$ splits. In particular we have $E \mid Q \cap H \cong$ $(E \mid Q \cap H) / \pi_{*}(F) \oplus \pi_{*}(F)$ and hence $E \mid Q \cap H \cong \bigoplus_{1 \leq j \leq s} \boldsymbol{O}_{Q \cap H}\left(b_{j}\right)^{\oplus m_{j}}$. As in the proof of Lemma 4.2 we obtain $E \cong \bigoplus_{1 \leq j \leq s} \boldsymbol{O}_{Q}\left(b_{j}\right)^{\oplus m_{j}}$.
(b) Now assume Q smooth, i.e. $b=-1$. The proof of Lemma 4.2 and the part $b=0$ just proven gives a proof of Theorem 1.1 in this case. Now assume $b>0$. The proof of Lemma 4.3 gives by induction on b the general case, concluding the proof.

5. Proof of Theorem 1.2

Proof of Theorem 1.2. By assumption $X=H \cup M$ with H and M. closed hyperplanes of $\boldsymbol{P}(V)$ and $H \neq M$. Let z (resp. w) be the homogeneous equation of H (resp. M). At each point $P \in H$ (resp. $P \in M$) the germ of z (resp. w) generates the ideal sheaf of H (resp. M) in $\boldsymbol{P}(V)$. At each $P \in H \cap M$ the germs of z and w generate the ideal sheaf of $M \cap H$ in $\boldsymbol{P}(V)$. Thus we have a MayerVietoris exact sequence

$$
\begin{equation*}
0 \rightarrow \boldsymbol{O}_{X}(t) \rightarrow \boldsymbol{O}_{\boldsymbol{H}}(t) \oplus \boldsymbol{O}_{M}(t) \rightarrow \boldsymbol{O}_{H \cap M}(t) \rightarrow 0 \tag{4}
\end{equation*}
$$

Since $H^{0}\left(H, \boldsymbol{O}_{H}(t)\right)$ (resp. $\left.H^{0}\left(H \cap M, \boldsymbol{O}_{H \cap M}(t)\right)\right)$ is the set of all degree t continuous homogeneous polynomials on H (resp. $H \cap M$), the restriction map $H^{0}\left(H, \boldsymbol{O}_{H}(t)\right) \rightarrow H^{0}\left(H \cap M, \boldsymbol{O}_{H \cap M}(t)\right)$ is surjective. Since $h^{1}\left(H, \boldsymbol{O}_{H}(t)\right)=$ $h^{1}\left(M, \boldsymbol{O}_{M}(t)\right)=0$ for every integer $t([\mathrm{~L} 1], \mathrm{Th} .7 .3$ and 8.2), the exact sequence (4) gives $h^{1}\left(X, \boldsymbol{O}_{X}(t)\right)=0$ for all t. By [L1], Th. 8.5 and Th. 7.1, there are two non-increasing sequences of r integers $a_{1} \geq \cdots \geq a_{r}$ and $b_{1} \geq \cdots \geq b_{r}$ such that $E \mid H \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{H}\left(a_{i}\right)$ and $E \mid M \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{H}\left(b_{i}\right)$. Since $E \mid H \cap M \cong$ $E \mid M \cap H$, we have $b_{i}=a_{i}$ for every i.

Since E is locally free, by tensoring (4) with E we obtain an exact sequence

$$
\begin{equation*}
0 \rightarrow E \rightarrow E|H \oplus E| M \rightarrow E \mid H \cap M \rightarrow 0 \tag{5}
\end{equation*}
$$

If $a_{1}=a_{r}$, set $k:=r$. If $a_{1}>a_{r}$, let k be the first integer with $1 \leq k \leq r$ and $a_{k}>a_{k+1}$. By [L1], Th. 8.4, for all integers t, we have $h^{1}(H, E(t) \mid H)=h^{1}(M, E(t) \mid H)=h^{1}(H \cap M, E(t) \mid H \cap M)=0$. Notice that $h^{0}\left(H, E\left(-a_{1}\right) \mid H\right)=h^{0}\left(M, E\left(-a_{1}\right) \mid M\right)=h^{0}\left(H \cap M, E\left(-a_{1}\right) \mid H \cap M\right)=k$. Furthermore, since $E(t)\left|H \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{H}\left(a_{i}+t\right), E\right| H \cap M \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{H \cap M}\left(a_{i}+t\right)$ and $h^{1}\left(H, \boldsymbol{O}_{H}(z)\right)=0$ for every integer z, the restriction map $H^{0}(H, E(t) \mid H) \rightarrow$ $H^{0}(H \cap M, E(t))$ is surjective. Hence from (6) we obtain $h^{1}(X, E(t))=0$ for every integer t and $h^{0}\left(X, E\left(-a_{1}\right)\right)=k$. The last equality and the definition of the integer k imply that for any line $D \subset X$ the restriction map $H^{0}\left(C, E\left(-a_{1}\right)\right) \rightarrow$
$H^{0}\left(D, E\left(-a_{1}\right) \mid D\right)$ is an isomorphism. Since any point of X is contained in a line contained in X, we obtain that the natural map $H^{0}\left(X, E\left(-a_{1}\right)\right) \otimes \boldsymbol{O}_{X}$ is injective and it has as image a rank k trivial subbundle, F, of $E\left(-a_{1}\right)$. If $k=r$ we obtain $E\left(-a_{1}\right) \cong \boldsymbol{O}_{X}^{\oplus a_{1}}$, proving the theorem in this case. If $k<r$, we obtain that $E / F\left(a_{1}\right)$ is a rank $r-k$ vector bundle such that its restriction to any line D of X has splitting type $a_{k+1} \geq \cdots \geq a_{r}$. By induction on the rank we obtain $E / F\left(a_{1}\right) \cong$ $\bigoplus_{k+1 \leq i \leq r} \boldsymbol{O}_{X}\left(a_{i}\right)$. Since $h^{1}\left(X, \boldsymbol{O}_{X}(t)\right)=0$ for every $t \in \boldsymbol{Z}$, every extension of $E / F\left(a_{1}\right)$ by $F\left(a_{1}\right)$ splits. Thus $E \cong F\left(a_{1}\right) \oplus E / F\left(a_{1}\right) \cong \bigoplus_{1 \leq i \leq r} \boldsymbol{O}_{X}\left(a_{i}\right)$, as wanted. The uniqueness part in the statement of Theorem 1.2 is obvious because for any line $D \subset X$, the non-increasing sequence of r integers $a_{1} \geq \cdots \geq a_{r}$ is the splitting type of $E \mid D$.

References

[B1] Ballico, E., Uniform vector bundles on quadrics. Ann. Univ. Ferrara-Sez. VII-Sc. Mat. 27 (1981), 135-146.
[B2] Ballico, E., Branched coverings and minimal free resolution for infinite-dimensional complex spaces. Georgian Math. J. 10 (2003), no. 1, 37-43.
[D] Dineen, S., Complex Analysis in Locally Convex Spaces. Mathematics Studies n. 57, NorthHolland, 1981.
[EF] Elencwajg, G. and Foster, O., Bounding cohomology groups of vector bundles on $\boldsymbol{P}_{\boldsymbol{n}}$. Math. Ann. 246 (1980), 251-270.
[Go] Godement, R., Théorie des faisceaux. Hermann, Paris, 1973.
[G] Gross, H., Quadratic Forms in Infinite Dimensional Vector Spaces. Progress in Math. 1, Birkhäuser, 1979.
[H] Houzel, Ch., Espaces analytiques relatifs et théorème de finitude. Math. Ann. 205 (1973), 13-54.
[I] Ishimura, S., On π-uniform vector bundles. Tokyo J. Math. 2 (1979), 337-342.
[K] B. Kotzev, Vanishing of the first Dolbeaut cohomology group of line bundles on complete intersections in infinite-dimensional projective space, Ph.D. thesis, Purdue, December 2001.
[L1] Lempert, L., The Dolbeaut complex in infinite dimension I. J. Amer. Math. Soc. 11 (1998), 485-520.
[L2] Lempert, L., The Dolbeaut complex in infinite dimension III. Sheaf cohomology in Banach spaces. Invent. Math. 142 (2000), 579-603.
[OSS] Okonek, C., Schneider, M. and Spindler, H., Vector Bundles on complex projective spaces. Progress in Math. 3, Birkhäuser, Boston-Basel-Stuttgart, 1980.
[S] Sato, E., On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties. J. Math. Kyoto Univ. 17 (1977), 127-150.
[T] Tyurin, A. N., Vector bundles of finite rank over infinite varieties. Math. USSR Izvestija 10 (1976), 1187-1204.

Dept. of Mathematics, University of Trento
38050 Povo (TN)-Italy
fax: italy +0461881624
e-mail: ballico@science.unitn.it

[^0]: Mathematics Subject Classification (2000): 32L10, 32K05, 58B12.
 Key words: Holomorphic vector bundle, infinite-dimensional quadric hypersurface, infinite-dimensional projective space.
 Received May 28, 2002.
 Revised May 19, 2003.

