Open Access
2015 Ground state solutions for a class of nonlinear Maxwell-Dirac system
Xianhua Tang, Wen Zhang, Jian Zhang
Topol. Methods Nonlinear Anal. 46(2): 785-798 (2015). DOI: 10.12775/TMNA.2015.068

Abstract

This paper is concerned with the following nonlinear Maxwell-Dirac system \begin{equation*} \begin{cases} \displaystyle -i\sum^{3}_{k=1}\alpha_{k}\partial_{k}u + a\beta u + \omega u-\phi u =F_{u}(x,u), \\ -\Delta \phi=4\pi|u|^{2},\\ \end{cases} \end{equation*} for $x\in\mathbb R^{3}$. The Dirac operator is unbounded from below and above, so the associated energy functional is strongly indefinite. We use the linking and concentration compactness arguments to establish the existence of ground state solutions for this system with asymptotically quadratic nonlinearity.

Citation

Download Citation

Xianhua Tang. Wen Zhang. Jian Zhang. "Ground state solutions for a class of nonlinear Maxwell-Dirac system." Topol. Methods Nonlinear Anal. 46 (2) 785 - 798, 2015. https://doi.org/10.12775/TMNA.2015.068

Information

Published: 2015
First available in Project Euclid: 21 March 2016

zbMATH: 1375.35425
MathSciNet: MR3494971
Digital Object Identifier: 10.12775/TMNA.2015.068

Rights: Copyright © 2015 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.46 • No. 2 • 2015
Back to Top