Open Access
2012 Pointwise Comparison Principle for clamped Timoshenko beam
Grzegorz Bartuzel, Andrzej Fryszkowski
Topol. Methods Nonlinear Anal. 39(2): 335-359 (2012).

Abstract

We present the properties of three Green functions for:

1. general complex "clamped beam" \begin{equation}\tag{${\textrm{BC}}$} \begin{split} D_{\alpha ,\beta }[y] &\equiv y'''' -(\alpha ^{2}+\beta ^{2}) y''+\alpha ^{2}\beta^{2}y=f, \\ y(0)& =y(1) =y'(0) =y'(1) =0. \end{split} \end{equation}

2. Timoshenko clamped beam $D_{\alpha ,\overline{\alpha }}[y] \equiv f$ with (BC).

3. Euler-Bernoulli clamped beam $D_{k(1+i) ,k(1-i)} [ y] \equiv f$ with (BC).

In case 1. we represent solution via a Green operator expressed in terms of Kourensky type system of fundamental solutions for homogeneous case. This condense form is, up-to our knowledge, new even for the Euler-Bernoulli clamped beam and it allows to recognize the set of $\alpha's$ for which the Pointwise Comparison Principle for the Timoshenko beam holds. The presented approach to positivity of the Green function is much straightforward then ones known in the literature for the case 3 (see [J. Schröder, Zusammenhängende mengen inverspositiver differentialoperatoren vierter ordnung, Math. Z. 96 (1967) 89-110]).

Citation

Download Citation

Grzegorz Bartuzel. Andrzej Fryszkowski. "Pointwise Comparison Principle for clamped Timoshenko beam." Topol. Methods Nonlinear Anal. 39 (2) 335 - 359, 2012.

Information

Published: 2012
First available in Project Euclid: 21 April 2016

zbMATH: 1276.34020
MathSciNet: MR2985884

Rights: Copyright © 2012 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.39 • No. 2 • 2012
Back to Top