Open Access
2010 Twin positive solutions for singular nonlinear elliptic equations
Jianqing Chen, Nikolaos S. Papageorgiou, Eugénio M. Rocha
Topol. Methods Nonlinear Anal. 35(1): 187-201 (2010).

Abstract

For a bounded domain $Z\subseteq{\mathbb{R}}^N$ with a $C^2$-boundary, we prove the existence of an ordered pair of smooth positive strong solutions for the nonlinear Dirichlet problem $$ -\Delta_p x(z) = \beta(z)x(z)^{-\eta}+f(z,x(z)) \quad \text{a.e. on } Z \text{ with } x\in W^{1,p}_0(Z), $$ which exhibits the combined effects of a singular term ($\eta\geq 0$) and a $(p-1)$-linear term $f(z,x)$ near $+\infty$, by using a combination of variational methods, with upper-lower solutions and with suitable truncation techniques.

Citation

Download Citation

Jianqing Chen. Nikolaos S. Papageorgiou. Eugénio M. Rocha. "Twin positive solutions for singular nonlinear elliptic equations." Topol. Methods Nonlinear Anal. 35 (1) 187 - 201, 2010.

Information

Published: 2010
First available in Project Euclid: 21 April 2016

zbMATH: 1203.35117
MathSciNet: MR2681107

Rights: Copyright © 2010 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.35 • No. 1 • 2010
Back to Top