Open Access
2006 Topologies on the group of homeomorphisms of a Cantor set
Sergey Bezuglyi, Anthony H. Dooley, Jan Kwiatkowski
Topol. Methods Nonlinear Anal. 27(2): 299-331 (2006).

Abstract

Let ${\rm Homeo}(\Omega)$ be the group of all homeomorphisms of a Cantor set $\Omega$. We study topological properties of ${\rm Homeo}(\Omega)$ and its subsets with respect to the uniform $(\tau)$ and weak $(\tau_w)$ topologies. The classes of odometers and periodic, aperiodic, minimal, rank 1 homeomorphisms are considered and the closures of those classes in $\tau$ and $\tau_w$ are found.

Citation

Download Citation

Sergey Bezuglyi. Anthony H. Dooley. Jan Kwiatkowski. "Topologies on the group of homeomorphisms of a Cantor set." Topol. Methods Nonlinear Anal. 27 (2) 299 - 331, 2006.

Information

Published: 2006
First available in Project Euclid: 13 May 2016

zbMATH: 1136.37006
MathSciNet: MR2237457

Rights: Copyright © 2006 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.27 • No. 2 • 2006
Back to Top