2022 Solutions to indefinite weakly coupled cooperative elliptic systems
Mónica Clapp, Andrzej Szulkin
Topol. Methods Nonlinear Anal. 59(2A): 553-568 (2022). DOI: 10.12775/TMNA.2020.052

Abstract

We study the elliptic system\begin{equation*}\begin{cases}-\Delta u_1 - \kappa_1u_1 = \mu_1|u_1|^{p-2}u_1 + \lambda\alpha|u_1|^{\alpha-2}|u_2|^\beta u_1, \\-\Delta u_2 - \kappa_2u_2 = \mu_2|u_2|^{p-2}u_2 + \lambda\beta|u_1|^\alpha|u_2|^{\beta-2}u_2, \\u_1,u_2\in D^{1,2}_0(\Omega),\end{cases}\end{equation*}where $\Omega$ is a bounded domain in $\mathbb R^N$, $N\geq 3$, $\kappa_1,\kappa_2\in\mathbb R$, $\mu_1,\mu_2,\lambda> 0$, $\alpha,\beta> 1$, and $\alpha + \beta = p\le 2^*:={2N}/({N-2})$. For $p\in (2,2^*)$ we establish the existence of a ground state and of a prescribed number of fully nontrivial solutions to this system for $\lambda$ sufficiently large. If $p=2^*$ and $\kappa_1,\kappa_2> 0$ we establish the existence of a ground state for $\lambda$ sufficiently large if, either $N\ge5$, or $N=4$ and neither $\kappa_1$ nor $\kappa_2$ are Dirichlet eigenvalues of $-\Delta$ in $\Omega$.

Citation

Download Citation

Mónica Clapp. Andrzej Szulkin. "Solutions to indefinite weakly coupled cooperative elliptic systems." Topol. Methods Nonlinear Anal. 59 (2A) 553 - 568, 2022. https://doi.org/10.12775/TMNA.2020.052

Information

Published: 2022
First available in Project Euclid: 21 September 2021

MathSciNet: MR4476353
zbMATH: 1497.35171
Digital Object Identifier: 10.12775/TMNA.2020.052

Keywords: cooperative , critical , existence and multiplicity of solutions , indefinite , subcritical , Weakly coupled elliptic system

Rights: Copyright © 2022 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.59 • No. 2A • 2022
Back to Top