2022 Cycles, Eulerian digraphs and the Schönemann-Gauss theorem
Heinrich Steinlein
Topol. Methods Nonlinear Anal. 59(2A): 569-584 (2022). DOI: 10.12775/TMNA.2020.058

Abstract

In 19th century, Fermat's little theorem ``$a^p\equiv a({\rm mod}\;p)$ for $a\in\mathbb Z$, $p$ prime'' was generalized in two directions: Schönemann proved a corresponding congruence for the coefficients of monic polynomials, whereas Gauss found a congruence result with $p$ replaced by any $n\in\mathbb N$. Here, we shall give an elementary proof of the common generalization of these two results.

Citation

Download Citation

Heinrich Steinlein. "Cycles, Eulerian digraphs and the Schönemann-Gauss theorem." Topol. Methods Nonlinear Anal. 59 (2A) 569 - 584, 2022. https://doi.org/10.12775/TMNA.2020.058

Information

Published: 2022
First available in Project Euclid: 5 October 2021

MathSciNet: MR4476354
zbMATH: 1505.11010
Digital Object Identifier: 10.12775/TMNA.2020.058

Keywords: characteristic polynomial , Eulerian digraph , Schönemann-Gauss congruences

Rights: Copyright © 2022 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.59 • No. 2A • 2022
Back to Top