Abstract
We classify the isomorphism classes of finitely generated torsion $\mathcal{O}_E[[T]]$-modules which are free over $\mathcal{O}_E$ of rank $4$, where $\mathcal{O}_E$ is the ring of the integers of a local field $E$. We apply this classification to the Iwasawa module associated to the cyclotomic $\mathbb{Z}_p$-extension of an imaginary quadratic field.
Citation
Kazuaki MURAKAMI. "Isomorphism Classes of Modules over Iwasawa Algebra with $\lambda =4$." Tokyo J. Math. 39 (1) 101 - 132, June 2016. https://doi.org/10.3836/tjm/1459367260