Abstract
In this note we investigate the spectral gaps of the Schrödinger operator $$H=-\frac{d^2}{dx^2}+\sum_{l=-\infty}^{\infty}\big(\beta_1\delta^{\prime}(x-2\pi l)+\beta_2\delta^{\prime}(x-\kappa-2\pi l)\big) \quad \textrm{in} \quad L^2(\mathbf{R})\,,$$ where $\beta_1$, $\beta_2 \in \mathbf{R}\setminus\{0\}$ and $\kappa/\pi \in \mathbf{Q}$. By $G_{j}$ we denote the $j$-th gap of the spectrum of $H$. We provide the asymptotic expansion of the length of $G_{j}$ as $j\rightarrow\infty$.
Citation
Tomohiro ICHIMURA. "Asymptotic Estimates for the Spectral Gaps of the Schrödinger Operators with Periodic $\delta^{\prime}$-Interactions." Tokyo J. Math. 30 (1) 121 - 138, June 2007. https://doi.org/10.3836/tjm/1184963651
Information