Open Access
December 2006 Mehler Kernel Approach to Tempered Distributions
Bishnu P. DHUNGANA
Tokyo J. Math. 29(2): 283-293 (December 2006). DOI: 10.3836/tjm/1170348167

Abstract

Using the Mehler kernel $E(x,\xi,t)$, we show that the solution of the Hermite heat equation $({\partial}_{t} - \triangle + |x|^{2})U(x,t) = 0$ in $\mathbf{R}^{n}\times (0,T)$ satisfying $\sup_{x\in{\mathbf{R}}^{n}}|U(x,t)|\leq C(1+ t^{-N})$ for some constants $C$ and $N$ can be expressed as $U(x,t) = \langle u(\xi), E(x,\xi,t)\rangle$ for unique $u$ in ${\mathcal S}^{'}(\mathbf{R}^{n})$. This is a parallel result with the one in (Theorem 1.2, T. Matsuzawa, {\it A calculus approach to hyperfunctions} III, Nagoya Math. J. {\bf 118} (1990), 133--153). Moreover we represent the tempered distributions as initial values of solution of the Hermite heat equation and apply it to generalize a theorem by Strichartz [Theorem 3.2, Trans. Amer. Math. Soc. {\bf 338} (1993), 971--979] in the space of tempered distributions.

Citation

Download Citation

Bishnu P. DHUNGANA. "Mehler Kernel Approach to Tempered Distributions." Tokyo J. Math. 29 (2) 283 - 293, December 2006. https://doi.org/10.3836/tjm/1170348167

Information

Published: December 2006
First available in Project Euclid: 1 February 2007

zbMATH: 1120.33007
MathSciNet: MR2284972
Digital Object Identifier: 10.3836/tjm/1170348167

Subjects:
Primary: 33C45
Secondary: 46F05

Rights: Copyright © 2006 Publication Committee for the Tokyo Journal of Mathematics

Vol.29 • No. 2 • December 2006
Back to Top