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Abstract. Using the Mehler kernek (x, &, 1), we show that the solution of the Hermite heat equatin—
A+ x|2U(x, 1) = 0inR" x (0, T) satisfying supcgrn U (x, )| < C(1+ 1~N) for some constant§ and N
can be expressed &8(x, 1) = (u(§), E(x, &, t)) for uniqueu in S’(R"). This is a parallel result with the one in
(Theorem 1.2, T. Matsuzaw#, calculus approach to hyperfunctions Ill, Nagoya Math. J118 (1990), 133-153).
Moreover we represent the tempered distributions as initial values of solution of the Hermite heat equation and apply
it to generalize a theorem by Strichartz [Theorem 3.2, Trans. Amer. Math.338¢1993), 971-979] in the space
of tempered distributions.

1. Introduction

We denote by, the normalized Hermite function dr defined by

2
(—DFe¥/2 gk
hk(x)—mﬁe , k—0,1,2,....
Forx = (x1,...,x,) € R", u = (U1, ..., ) € N3 ; we defined,, (x) := ]_[;?zlhw (xj)and
call it the normalized Hermite function dr”. It is well known that{®,} forms a complete

orthonormal basis ofl2(R") and solves the eigenvalue problémA + |x|2)¥ = AW with
A =2|u|+n. Forallx, & € R" andw € C with |w| < 1, the well known Mehler formula (p.
107,[8] & p. 6, [6]) is

1 1 1tw? 2812y 20
Zwlm(pﬂ(x)(pﬂ(g:) - e 3 1oz XITHED+ =55 x08 (lw| < 1),
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where the series is uniformly and absolutely convergentwre C : |w| < 1}. Then for
t > 0, itis not difficult to see that
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We denote byE (x, &, t) the Mehler kernel defined by

2 e~ Crmig (1)@, (E), x,E€R", t>0

(1.2 E(x,é‘,t)={07 x,§eR", 1<0.

For eacht € R" and eachr > 0, E(x, &, t) converges irS(R") (see Section 2). Moreover
for eacht € R”, it satifies the Hermite heat equatith — A + |x|?) U (x, r) = 0 forx € R”
and O < t < oo. Thus for anyu in S'(R"), the pair(u(-), E(x, -, t)) is well defined. We
then define the functioV (x, 1) := (u (&), E(x,&,1)) in R" x (0, T) and call itthe defining
function of u.
As a parallel result with the one in [3], the main purpose of this paper is to establish the
following characterization:
“For fixed T > 0, the defining functio/ (x, t) = (u(&), E(x, &, t)) of anyu in S (RM)
is the smooth solution af; — A + |x|)U(x, 1) = 0inR" x (0, T) such that

sup|U(x, )| < C(1++tV) for some constants, N > 0.
xeR?

Conversely every smooth functién(x, ¢) in R" x (0, T') with the above growth and satisfying
the Hermite heat equation can be representdd@s:) = (u(&), E(x, &, t)) for uniqueu <
S (R).”

Furthermore we represent the tempered distributions as initial values of solution of the
Hermite heat equation and apply it to provide a generalization in the ﬁfaaé) of the
following theorem by Strichartz:

THEOREM 1.1 (Theorem 3.2, [5]). If f isafunction on R" satisfying

(=2 + X2 flloo < Mn

2
for some constant M and all j € No, then f(x) = C 7.

Throughout the paper, we denotelldythe set of positive integers am the set of non-
negative integers. For amy= (a1, ..., ®,) € Ngand anyx = (x1, ..., x,) € R", we adopt
the standard notatiorjg| = a1 + - - - 4+ @, x* = x1 - - x,% andd® = 97* - - - 3," where
0 =0/0x;fori=1,...,n.

2. Characterization of the spaces S(R") and S (RM)

We denote byS(R") the Schwartz space of all®™® functions¢ on R” such that for all
a, B e Nj

sup [x*3P ¢ (x)] < .
xeR”®

The topology orS(R") is generated by the set of seminoriigs|, s = sup, g [x23P ¢ (x)].
A sequencde;} e is said to converge to zero $i(R") if [|¢;llo,s — 0 asj — oo for all
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a, B € Nj. We denote byS’(R") the dual space of (R") and call it the space of tempered
distributions. As remarked in (p. 142, [4]), we devote this section to give the proofs of the

characterization of the spac&sandS’ for n-dimensional case. First we give a lemma.

LEMMA 2.1. Let @, bethe normalized Hermite function on R”*. Then for any «, 8 €
NG, there exists a positive constant C such that

laf+1B] lal+1B1

I ®ullyp < C" VPl + 18D 72 A+ 1) 7

PROOF  First we simply take: = 1 and suppose that o, 8 € No, x € RandD =
d/dx. Itis well known that the normalized Hermite functiép on R satisfies

(x + D)h =0, k=0
(2.1 (x + D)hy = ~/2k hy—1, k>1
(x —D)hpy =20k + 1) hgy1, k=>0.

Moreover in view of (p. 171, [7]), it is easy to see that there exists a conGtan0 such that
(2.2) [he(x)] = G
for all x and allk. Consider the nontrivial cage+ 8 # 0. Then
X*DPh(x) =27%"F {(x + D) + (x — D)}* {(x + D) — (x — D)}F hy(x)
(2.3) =27P N (x+e1D) - (x + a4 pD) hi(x)

eeT

whereT = {e = (g1, ...,8q44p): & = +10r —1fori =1,...,a + B} and|T| = 22"F It
now follows from (2.1), (2.2) and (2.3) that

X DP ()] < (W2)" TP {(k+ 1) - (k +a+ B)IY? max {|hxr; ()]}
ljlSe+p
1/2
<G (ﬁ)‘ﬂr}g {W} )

With the aid of Stirling’s formula, we can find a constahsuch that

k+a+pB Lk 1/2
X D Iy () <c(ﬁ)a+ﬂ{(k+“+ﬂ> e k+a+ﬁ}
B ektatB Kk Jk

11 1/2
< (V2 !(k Fat Bt (1+ #) }

< C@2 eyt (kc’%ﬁ +(a+ ﬂ)ﬁf)

<C@2Je)* P (a + ﬂ)#(“ k)#.
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Thus foru, «, B € Nf, we have

lo]+[81 lo|+181
I ®p llyp = sUpx“0P &, (x)] < C" (V)P + 18D "7 L+nh 7 .

xeR?

THEOREM 2.1. Let¢ € S(R"). Then¢ = ZM@&, ¢, )P, and for every nonnegative
integer M there exists a positive constant C := C (M) such that

(2.4) (@, @)l < CA+ )™,
Conversely the series ZM a,®, convergesin S(R") if the coefficients a,, satisfy the growth
condition (2.4).

PROOF. Sincep € S(R") c L2(R"), clearly¢ = ZM (¢, D,)P,. For every nonnega-
tive integerM, the operatof—A + 1x|%)?M is self-adjoint. So we have

D U, 0PIkl +m)M = (¢, (=4 + [x[HPM ) < 0.
n

From this the assertion follows. To prove the conversegplat) := ZM a, P, (x). For
N € Np, consider the partial sumgy (x) = ZWEN a, P, (x). Then for every, B € N,
we have

oy — ¢v-llep < Y laul 1Ppllas -

|ul=N

UsingY",,,—v 1= ("7 < 1+ N)". Lemma 21 and choosing/ = |a| + || +n + 2
in the estimate ofi,,, we havell¢y — dn_1lla,p < C' (1+ N)~2for some positive constant
C'. Thenforalle > 0 andN, > N1 > P, we have

N> o)
lgn, — ¢nillap < D lon —¢n-1lap <C > A+N) 2 <e
N=N1+1 N=P

for sufficiently largeP. It follows that{¢y} is a Cauchy sequence (R"). Since the space
S(R™) is complete, the assertion follows. a

REMARK 2.1. For fixedx and¢, the Mehler kernelE (x, &, r) converges inS(R")
since the Hermite coefficiert @*+"! @, (x) in (1.2) satisfies the estimate as in Theorem
2.1.

THEOREM 2.2. Letu € S (R"). Then there exist positive constants C and M such
that

(2.5) [, @) < CA+ |uh™.

Conversely the series Zu b, P, convergesin S'(R") if the coefficients b,, satisfy the growth
condition (2.5). Moreover if u € S/(R"), thenu = Zu<”’ ®,)®, inthesensethat (u, ¢) =
Zﬂw, D) (9, P, for every ¢ € S(R™).
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PROOF. Sinceu € S’(R”), there exist a constady > 0 anda, 8 € Nj such that
{u, @) < C1l|Pulla,p -

By Lemma 21, we see tha(u, ®,,)| < C2(1+ |u)™ whereM = (la| + |B])/2, Cz2 :=
C1 C" (2/e)*M (2M)M are positive constants.

For the converse, lat = ZM b,®, and define(u, ¢) = ZM by (¢, @) for every
¢ € S(R"). It is well-defined because of the estimatespfand (¢, ®,). For N € Npo,
consider the partial sunag,; := Z\MISN b,®,. We showthatiy — uin S (R") asN — oo.
So let¢p € S(R") anda, = (¢, ®,). Then from the hypothesis and the estimate pfin
Theorem 2.1, there exists a positive const@nand an integeM; > M such that

funy —w, @) < D Ibullagl <€ Y A+ uh)™M2 <" 3" @+ |up~?

|ul>N [ul>N |ul>N

which tends to zero a§ — oo. If the series) . b, @, converges to, say, in S'(R"), then
u andv both have the same Hermite coefficients and hence are the same. Last part is obvious
from the first part. O

3. Mehler Kernel Approach

In view of (11), itis easy to see thaf(x, &, 1) = 7i(x, 1) E(x, &, 1) where

22 —nt 1 1—e—H 2
3.1 e D) = —— e 2 e
A+ e 4)2
(3.2 E(x,& 1) = (271)_2(1-’_6_41) e 21w ‘5 1+e_4;x‘

for x, & € R" andr > 0. With this decomposition, we give some lemmas.

LEMMA 3.1. Foranys >0
(3.3) / E(x,€,1)dE =1,
Rﬂ

(3.4) ) - E(x, &, 1)dé — Ouniformly forx € R” asr — 0% .
=

PROOF It is immediate to derive (3) from (32). We now prove (31). Under the

. —4t —2t
change of variable/ =< (g 2¢ x) = s, we have

2(1—e=%) T Ite X
\/)\E

Thus the above integral converges to 0 uniformlysfaz R” ast — 0*. O

E~(x,§,t)d§=n_"/2/ Py .
. 1te—4
s 5128\ 3=

20—2t
X
e

E
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For a continuous and bounded functionn R", consider the following Cauchy problem

(3.5)

n n
2
G = Do aij Ngige = b NGE —cx.NU =0, (x,n) eR"x (0,T)
i,j=1 i=1
U(x,0) = h(x), x € R

wherela;; (x, 1)| < M(x2+ 1), |bi(x,1)] < M{/|x|?+1, ¢(x,t) < M for some constant
M > 0.

llin—Kalasnikov—Olejnik (p. 14, [2]) have shown that the solution of§Bis unique in
the class of bounded functions®¥ x [0, T']. With (a;;) = then x n identity matrix,b; = 0,

¢ = —|x|?andM = 1, the following theorem is a particular case of [2].

THEOREM 3.1. For & asin (3.5), the solution of the Cauchy problem

(3.6) { @ — A+ 1xPDUE. 1) =0, (x,/)eR" x (0,T)

Ux,0 =hx), x € R".

isunique in the class of bounded functionsin R” x [0, T'].

LEMMA 3.2. Let E(x, &,t) be the Mehler kernel and / a continuous and bounded
functionon R". Let U(x, 1) := [p, E(x, &, )h(§)d§. Thenitis a well-defined C* function
inR" x (0, T'] and satisfies that

(i) 3 —A+|x]DUx, 1) =0inR" x (0, T),
(i) U(x,t) — h(x) uniformly on each compact subset of R” ast — 0.
(i)  U(x,t)isboundedin R" x [0, T].

PrROOF. The proof of (i) is obvious. To prove (ii), lét> 0 be arbitrary. Then

|U(x, 1) = h(x)|

=(x, t)/R [h(§) — h(x)|E(x, §, 0)dE + |7ij(x, 1) — 1] [h(x)|

<t s @ -l [, Ewgnds
- e

x‘<8 } T e A

E(x,&,0)d§ + 1ij(x, 1) — 1] [h(x)]

x|>8

T i) 2||h||oo/‘ -

T

=h+hLh+13.

Let K be a compact subset &'. Sincek(x) is uniformly continuous on &-neighborhood
Ks of K, it follows that for anye > 0, |§ — x| < § implies|h(§) — h(x)| < ¢ for &, x € Kj.
Let |h(x)| < C(K) for everyx € K. We note thafj(x, 1) — 1 in view of (3.1) ag — 0T.
Then clearlyls tends to zero as — 0T. Furthermore for every € K, I1 tends to zero as
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t — 0% since

2672t
tx

e

:

and hence applying the uniform continuity ofon Ks. In view of Lemma 3.1,/; tends to
zero ag — O*. This proves (ii).

Now we prove (iii). Sincé: is bounded, so i#/(- , 0). By Lemma 31 and boundedness
of 77(x, 1), there exists a consta@t> 0 such that

|Ux, )] < llhlloo 7(x, 1) /Rn E(x,&,nds <C

for all (x,7) € R" x (0,T]. ThusU(x,t) is bounded inR" x [0, T] which proves the
assertion. O

4, Main Results

THEOREM 4.1. For fixed T > 0, the defining function U (x, ) = (u (&), E(x, &, t)) of
any u inS' (R") isthe smooth solution of the Her mite heat equation (3; —A+|x|9)U(x,t) =0
inR"™ x (O, T) such that for some positive constants C and N

(4.1) sup|U(x, 0] < CAL+17N),

xeR”

Conversely every smooth function U (x, ¢t) in R x (0, T') with the growth of type (4.1) and
satisfying the Hermite heat equation can be represented as U (x, 1) = (u(§), E(x, &, t)) for
uniqueu € S (R") and moreover

(4.2) Ux,1) = Zcu e @R (x), U(-,0") =u
0

where|c,| < C(1+ |u)™M for some positive constants C and M := M (N).

PROOF. We easily see that the defining function

Ulx, 1) = (&), E(x,£,0) =y e @ (&), @, (8)) &,(x)
"

satisfies the Hermite heat equation. As such it is smooR'irx (0, T') by the hypoelliptic
property of the operatdt, — A + |x|2 (see p. 168, [1]). By Theorem2and (22), there exist
a positive integeM and a constanty > 0 such that

U@ HDI=GC1Y > e 2@ jup™

k=0 |pu|=k

> (k4+n—1\1A+kM
o (TR

k=1
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o0
20M My M+ 2)!
= G Cl (1 + ];- (2tk)"+M+2 )

=G C1(1+

mm+M+2! 1
24 t"+M+2

<C@A+t™)
GGt N

whereN :=n + M + 2 andC := ~—%;—— are positive constants.
Conversely for a positive integet, let

0, t <0,
f@o = {tm_l/(m —1l, >0
Multiplying f by a suitableC5° function, we obtain functions(r) andw (¢) with

f@, t<T/4,

V(t):{o, t>T/2

and the support ab C [T /4, T /2] such that

(4.3) (%) V(1) = 8(t) + w(t)

whereé is the Dirac measure. Now take the integee= [N] + 2 whereN is the constant
in the condition (41) and[N1 is the least integer greater thah Consider the following
functions inR" x (0, T/2)

T T
L(x,t) = / Ux,t+s)v(s)ds, H(x,t)= / U, t+s)w(s)ds.
0 0

In view of (4.3) it is easy to see that

(4.4) Ux,t) = <—%) L(x,t) —H(x,t).

By hypothesis[ andH are bounded solutions of the Hermite heat equatid®’irx (0, 7'/2)
and can be continuously extended®® x [0, T/2] form = [N] + 2. DefineL(x, 0) =: I(x)

and H (x, 0) =: h(x). Then clearlyl andh are continuous and bounded functions®h
HenceL andH are bounded ifR" x [0, T/2]. By Theorem 3L and Lemma 2, we have

Lx,1) = /RHI(S)E(x,SJ)dS, Hx,1) = /Rnh(S)E(x,SJ)dS

in R" x [0, T/2] and hence (4}) reduces to

8 m
Ux,1)= (— 5) /Rnl(S)E(x,S,f)dS —/Rnh(S)E(x,E,t)dé
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_ < 8 ) 26*(2“‘”4’”)1‘ (l, ¢M> ¢M(x) _ Zef(Zlan)t (h , ¢M> ¢M(x)

o
® iz
45) =) e A+ )" (I, @) — (b, Pu)} Bu(x).
y
Put ¢, = lul +n)"™(,®.) — (h,P,). By Theorem 2, we can find some positive

constants¥’ andC’ such that

4.6)  lcul <2C° A+ DM @l +n)" < 2C 0" A+ |uhM " = c@ + [uhM

wherem = [N1+2,C :=2C'n™ > 0andM := M +m > 0. Defineu := Y, ¢, .
Thenu belongs taS' (R") by Theorem 2 and(u, @) = c,. Hence (45) takes the form
UG, )= e Gl @), (x) = (&), E(x,&,1)) in R"x (0,T/2).
"

Uniqueness of: follows from the uniqueness of the cfiefent of the Hermite series. More-
over (42) is obvious in view of (46) and (46). Furthermore

@.7) lim (UG, 1), ¢) = lim Y e @i @, )¢, @,) = . ¢), ¢eSR"
t—ot

t—ot

from the uniform convergence of the serles, e~ @+ (u, @) (¢, @,,) in (0, T/2). O

THEOREM 4.2. Let u € S (R"). Suppose that there exist a constant L > 0 and
a, B € Nj such that

(4.8) {(=A+ [x[Dux), p))| < L nd [1pllap

2
forall j e Npandall ¢ € S(R"). Thenu(x) = C e_%_ for some constant C.
PrROOF. For eachr > 0, the defining functiorU (x, ) = (u(§), E(x,&,1)) is aC*®
function inR”. It follows from (4.8) and (22) that

A+ 1xP UG, 01 <D e H(=a + €13 u (), DuE)] 1Du )|
"

(4.9) <GLn Yy e @y 06
"

By Lemma 21, (4.9) yields that

| +1B]

[(=A + [x127U (x, 1) < GLC"(2/e) " Pl(ja| +18) "2 n/

(4.10) x Y e (L )P
"W
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But

o
ZE—ZIIM\ 1+ |M|)\(¥|+\ﬁ\ — Z Z e~ 211l 1+ |M|)\(¥|+\ﬂ\

u k=0 |u|=k

0 (k 4+n— 1) (1 + k)leI+1A]

=1+ k 020k

k=1

al+|Bl+n

o0
1+ k)
=1+ Z eZtk
k=1

0 olal+Ipl+n glal+pl+n

= 1+Z etk

k=1

C1
(4.11) =1+ tlol+IBl+n+2

2
whereCy = 1@t Bltnt2l s 3 positive constant. So from. () and (411), we have

laf+1B]

I(=A + x| U (x, 1)] <GLC™"(2/e)*Hl(ja| + |8]) 2

C1 .
(4.12) X (1+ —t|a+|/3|+n+2) n'

Since for each > 0, GLC" (2\/e)*!T1Al(ja| + |,3|)‘L5Vﬂ <1 + Wﬁ) in (4.12) is a

positive constant and independent;oft follows from Theorem 11 that

x|

(4.13) Ux,t)y=Cre” 2

for some constant; depending om. Since the defining functioti (x, 7) satisfies the Hermite
heat equation, we have

x|

(4.14) & — A+ |x|DCre” 2 =0.

x|

X2 ’
Using(—A + |x|®e” 2z = ne="% in (4.14), we haveC, + nC; = 0 so that
(4.15) Ci=Ce™

for some constant'. Then for everyp € S(R"), it follows from (4.7), (4.13) and (415) that

2
(u(x), ¢ (x)) (Ux.0),$(x) = (Ce™ T, o).

= |lim
t—0t

This completes the proof. ]
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