Open Access
December 2005 On Homogeneous Almost Kähler Einstein Manifolds of Negative Curvature
Wakako OBATA
Tokyo J. Math. 28(2): 407-414 (December 2005). DOI: 10.3836/tjm/1244208198

Abstract

A homogeneous almost Kähler manifold $M$ of negative curvature can be identified with a solvable Lie group $G$ with a left invariant metric $g$ and a left invariant almost complex structure $J$. We prove that if $g$ is an Einstein metric and $G$ is of Iwasawa type, then $J$ is integrable so that $M$ is Kähler, and hence is holomorphically isometric to a complex hyperbolic space of the same dimension.

Citation

Download Citation

Wakako OBATA. "On Homogeneous Almost Kähler Einstein Manifolds of Negative Curvature." Tokyo J. Math. 28 (2) 407 - 414, December 2005. https://doi.org/10.3836/tjm/1244208198

Information

Published: December 2005
First available in Project Euclid: 5 June 2009

zbMATH: 1094.53043
MathSciNet: MR2191057
Digital Object Identifier: 10.3836/tjm/1244208198

Subjects:
Primary: 53C30
Secondary: 53C15 , 53C25

Rights: Copyright © 2005 Publication Committee for the Tokyo Journal of Mathematics

Vol.28 • No. 2 • December 2005
Back to Top