Translator Disclaimer
June 2003 On Some Properties of the Hyper-Kloosterman Codes
Koji CHINEN
Tokyo J. Math. 26(1): 55-65 (June 2003). DOI: 10.3836/tjm/1244208682

Abstract

The hyper-Kloosterman code was first defined as a trace code by Chinen-Hiramatsu [1]. In this article, two basic parameters of it, the minimum distance and the dimension are estimated. Analysis of the dimension shows that it is one of few examples of trace codes, of which the dimensions do not reduce when taking the trace, and are determined explicitly. It is also shown that the hyper-Kloosterman code can be realized as a quasi-cyclic code. It implies a method of explicit construction of quasi-cyclic codes of a new type.

Citation

Download Citation

Koji CHINEN. "On Some Properties of the Hyper-Kloosterman Codes." Tokyo J. Math. 26 (1) 55 - 65, June 2003. https://doi.org/10.3836/tjm/1244208682

Information

Published: June 2003
First available in Project Euclid: 5 June 2009

zbMATH: 1041.11082
MathSciNet: MR1981999
Digital Object Identifier: 10.3836/tjm/1244208682

Subjects:
Primary: 11T71
Secondary: 11T23, 94B40

Rights: Copyright © 2003 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.26 • No. 1 • June 2003
Back to Top