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Abstract. The hyper-Kloosterman code was first defined as a trace code by Chinen-Hiramatsu [1]. In this
article, two basic parameters of it, the minimum distance and the dimension are estimated. Analysis of the dimension
shows that it is one of few examples of trace codes, of which the dimensions do not reduce when taking the trace, and
are determined explicitly. It is also shown that the hyper-Kloosterman code can be realized as a quasi-cyclic code. It
implies a method of explicit construction of quasi-cyclic codes of a new type.

1. Introduction

Let p be a prime, r ≥ 2, m ≥ 2 and q = pr . We denote the finite field with q elements
by Fq . In Chinen-Hiramatsu [1], a new linear code Cm(q) is defined as a trace code, and is
named “hyper-Kloosterman code”:

DEFINITION 1.1. For any integerm ≥ 2, the hyper-Kloosterman codeCm(q) of degree
m− 1 is defined to be the image of the map

ϕm : Fmq → F(q−1)m−1

p

given by

ϕm(a) = {
Tr (a, x)

}
x∈(F×

q )
m−1,

where

Tr (a, x) = tr (a1x1 + a2x2 + · · · am−1xm−1 + am(x1x2 · · · xm−1)
−1)

for a = (a1, a2, · · · , am) ∈ Fmq and x = (x1, x2, · · · , xm−1), and tr =traceFq/Fp .

The symbol { }x∈(F×
q )
m−1 represents a vector obtained by letting x run through the

set (F×
q )
m−1 (such a notation is often used in the literature on the trace codes). The code

Cm(q) is a generalization of the Kloosterman code, which is the dual of the Melas code. The
Kloosterman code has been investigated by many authors. See for example, Hiramatsu [2],
Lachaud [3] and Wolfmann [10]. The original paper by C. M. Melas is [6].

In our previous paper [1], two properties of Cm(q) are deduced: one is a certain uniform
distribution property of the Hamming weights, and the other is a divisibility property of them.
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In this article, we deduce some more properties of Cm(q). In Section 2, we estimate the
minimum distance d(m, q) of Cm(q). The Hamming weight of the codeword in Cm(q) can
be expressed by the hyper-Kloosterman sums

Km(a; q) =
∑

x∈(G×)m−1

e(Tr (a, x)) (e(x) = e2πix/p) .

In some casesKm(a; q) becomes trivial (see (2.1)), but in other cases (see (2.2)), we need the
Deligne bound

|Km(a; q)| ≤ mq
m−1

2 (1.1)

which is valid for those Km(a; q)’s with a ∈ (F×
q )
m, to estimate the Hamming weight. The

estimate (1.1) is obtained in [7, p. 219]. Indeed, putting a = a1a2 · · · am ∈ F×
q for a =

(a1, a2, · · · , am) ∈ (F×
q )
m, we can see

Km(a; q) = Km(a; q) :=
∑
xi∈F×

q
x1x2···xm=a

e(tr (x1 + x2 + · · · + xm)) . (1.2)

Consider a hypersurface in the affine space over the algebraic closure of Fq , defined by

Va = {(x1, x2, · · · , xm) ∈ Am ; x1x2 · · · xm = a} .
Then there exist m complex numbers α1, α2, · · · , αm with |αj | ≤ q(m−1)/2 such that
Km(a; q) = (−1)m−1(α1 + α2 + · · · + αm) (see [7, p. 221]). Thus we have (1.1).

We also need numerical calculation of Km(a; q)’s for small m’s and q’s.
In Section 3, we are interested in the code C̄m(q) over Fq , which satisfies

tr C̄m(q) = Cm(q), where trC = {(tr c1, tr c2, · · · , tr cn)|(c1, · · · , cn) ∈ C} for a code C
over Fq . Especially we construct explicitly a generator matrix Gm,q of C̄m(q), which allows
us to know dimCm(q). It should be noted that we can find the exact value dimCm(q), in spite
of the definition of Cm(q) as a trace code: generally speaking, for a code C over Fq , we can
say no more than

dimC ≤ dim(trC) ≤ r · dimC

(see MacWilliams-Sloane [5, p. 208] or Stichtenoth [8, p. 222]). Theorem 3.1 shows that the
space C̄m(q) does not “collapse” when it is mapped by the trace function to Cm(q), due to the
special form of the matrix Gm,q .

From the observation of Gm,q , we also notice that Cm(q) can be realized as a quasi-
cyclic code. Moreover, this fact implies a new method of explicit construction of quasi-cyclic
codes by using exponential sums of several variables. The quasi-cyclic property is discussed
in Section 4.

In Appendix, we provide a useful, efficient algorithm of calculating exponential sums
over finite fields. This algorithm is used in deducing the results of Section 2, and is applicable
to various other problems of this kind.

ACKNOWLEDGEMENT. The author would like to express his sincere gratitude to Pro-
fessor T. Hiramatsu for introducing him to this subject and encouraging him throughout.
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2. Minimum distance of Cm(q)

We consider the minimum distance of Cm(q). In this section we restrict ourselves to the
case (p − 1)|m. Under this condition, the Hamming weight of the codeword ϕm(a) ∈ Cm(q)
(a = (a1, a2, · · · , am) ∈ Fmq ) takes one of the following values (see Chinen-Hiramatsu [1,
Section 2]):

ws = 1

2
{(q − 1)m−1 + (−1)m−s+1(q − 1)s−1} , (1 ≤ s ≤ m) (2.1)

Wa = 1

2
{(q − 1)m−1 −Km(a; q)} , (a ∈ F×

q ) , (2.2)

where s = �{i|1 ≤ i ≤ m, ai = 0} and Km(a; q) is defined in (1.2). Clearly if m ≥ 3, we
have

min
1≤s≤m
ws �=0

ws = wm−2 = 1

2
{(q − 1)m−1 − (q − 1)m−3} .

Therefore the biggest one of (q−1)m−3 andKm(a; q) gives the minimum distance. We know
the estimate of Km(a; q), the Deligne bound (1.1) . So basically, we compare two values
(q − 1)m−3 and mq(m−1)/2.

The goal of this section is the following:

THEOREM 2.1. Suppose (p−1)|m and let d(m, q) be the minimum distance ofCm(q).
Then we have the following:

(i)

d(m, q) = p − 1

p
{(q − 1)m−1 − (q − 1)m−3} if

{
m ≥ 6, q = 8, q ≥ 16,
m ≥ 8, q = 4, 9.

(ii)

d(m, q) ≥ Am,q := p − 1

p
{(q − 1)m−1 −m · q (m−1)

2 }

if

⎧⎨
⎩

3 ≤ m ≤ 7, q = 4,
2 ≤ m ≤ 6, q = 9,
2 ≤ m ≤ 5, q = 8, q ≥ 16,

except for (m, q) = (2, 4).

REMARK. We give the explicit value for the missing case (m, q) = (2, 4): d(2, 4) = 2.

First we prove an easy lemma:

LEMMA 2.2. Suppose (q − 1)m0−3 ≥ m0q
(m0−1)/2 for some m0 and q (m0, q ∈ Z,

m0 ≥ 2, q ≥ 4). Then for all m ≥ m0 we have (q − 1)m−3 ≥ mq(m−1)/2.

PROOF. It is easy to see

max
m≥2
q≥4

m+ 1

m
·

√
q

q − 1
≤ 1 .
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So we have (m0 + 1)
√
q/m0(q − 1) ≤ 1 for m0 and q in the assumption. Multiplying this

and m0q
(m0−1)/2 ≤ (q − 1)m0−3, we get

(m0 + 1)q
m0
2 ≤ (q − 1)m0−2 .

This shows that the desired formula holds for m = m0 + 1. Thus, by induction on m, we
obtain the conclusion. �

PROOF OF THEOREM 2.1. (i) First we consider the function

f (x) = (x − 1)3 − 6x
5
2 .

We can verify f (x) ≥ 0 if x ≥ 49. This together with Lemma 2.2 brings

(q − 1)m−3 ≥ mq
m−1

2 (2.3)

for all prime powers q ≥ 49 and allm ≥ 6. There are 7 prime powers (not primes themselves)
less than 49 (q = 4, 8, 9, 16, 25, 27, 32). For these, we can see, by Lemma 2.2 again, that
(2.3) holds when

m ≥ 8, q = 8, 9, 16, 25, 27, 32,

m ≥ 13, q = 4.

Moreover, computer calculation ofKm(a; q) leads to the conclusion (see the tables at the end
of this section).

(ii) When m = 2, we have w1 = {(q − 1) + 1}/2 and w2 = 0. Clearly w1 ≥
{(q − 1) − 2

√
q}/2, and all the nonzero Hamming weights are greater than A2,q for q �= 2

(when q = 4, A2,q < 0 and estimation becomes trivial). When 3 ≤ m ≤ 5, the smallest ws
but 0 is wm−2, and we can easily verify (q − 1)m−3 ≤ mq(m−1)/2 for q ≥ 4. Thus we have
proved (ii) for 2 ≤ m ≤ 5, q ≥ 4 ((m, q) �= (2, 4)). The remaining cases are due to computer
calculation ofKm(a; q). �

As this theorem shows, for large values of m’s, some of the vectors a ∈ (Fq)m with
zero entries give the codewords of the minimum distance, but for small m’s, they are given
by a ∈ (F×

q )
m. In these cases the minimum distance is expressed by the sums Km(a; q). The

exact value ofKm(a; q) is hard to determine, so there is no other way than to evaluate d(m, q)
by the value Am,q .

Here are the results of numerical calculation. In the tables below, maxKm(a; q) means
maxa∈F×

q
Km(a; q). Finding the explicit values of Km(a; q)’s requires some non-trivial algo-

rithm, which is explained in Appendix.
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q = 4

m 6 7 8 9 10 11 12
(q − 1)m−3 27 81 243 729 2187 6561 19683
mq(m−1)/2 192 448 1024 2304 5120 11264 24576

maxKm(a; q) 43 85 171 341 683 1365 2731

q = 8

m 6 7
(q − 1)m−3 343 2401
mq(m−1)/2 1086.1... 3584

maxKm(a; q) 247 713

q = 9

m 6
(q − 1)m−3 512
mq(m−1)/2 1458

maxKm(a; q) 584

q = 16

m 6 7
(q − 1)m−3 3375 50625
mq(m−1)/2 6144 28672

maxKm(a; q) 1519 9745

q = 27

m 6
(q − 1)m−3 17576
mq(m−1)/2 22727.9...

maxKm(a; q) 6398

q = 32

m 6 7
(q − 1)m−3 29791 923521
mq(m−1)/2 34755.7... 229376

maxKm(a; q) 11359 60577

REMARK. Are the hyper-Kloosterman codes good ? To see the efficiency of Cm(2r ),
let us use the Gilbert-Varshamov curve as a criterion:

y = 1 −H2(x) ,

where H2(x) = −x log2 x − (1 − x) log2(1 − x). Suppose Cm(2r ) is a [n, k, d]-code. Then
we can prove

k

n
≥ 1 −H2

(
d

n

)

if 2 ≤ m ≤ 5 and r is sufficiently large. This shows that good binary hyper-Kloosterman
codes would exist in the range 2 ≤ m ≤ 5.

3. Determination of dimCm(q)

For a code C over Fq , we denote the trace code of C (over Fp) by trC:

trC := {(tr c1, · · · , tr cn) | (c1, · · · , cn) ∈ C} .
In this section we show one way of describing the generator matrix of C̄m(q), where tr C̄m(q) =
Cm(q). This allows us to know the dimension of Cm(q).
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Let γ be a primitive element of Fq , i.e. γ is a generator of the multiplicative group F×
q .

First we number all the vectors in (F×
q )
m−1 as follows:

f 0 = (1, 1, · · · , 1) · · · · · ·
f 1 = (γ, 1, · · · , 1) f (q−1)2 = (1, γ 2, 1, · · · , 1)
f 2 = (γ 2, 1, · · · , 1) · · · · · ·

· · · · · · f (q−1)m−2 = (1, · · · , 1, γ )
f q−2 = (γ q−2, 1, · · · , 1) · · · · · ·
f q−1 = (1, γ , 1, · · · , 1) f (q−1)m−1−1 = (γ q−2, γ q−2, · · · , γ q−2) .

f q = (γ, γ, 1, · · · , 1)

Moreover we define I (x) for x = (x1, x2, · · · , xm−1) ∈ (F×
q )
m−1 by

I (x) = (x1x2 · · · xm−1)
−1 .

Then we form the matrixGm,q as follows:

Gm,q =
(

f T
0 f T

1 · · · f T
(q−1)m−1−1

I (f 0) I (f 1) · · · I (f (q−1)m−1−1)

)
, (3.1)

where xT is the transposed vector of x. If we consider a code C̄m(q) over Fq with a generator
matrix Gm,q , we can see Cm(q) = tr C̄m(q). Using Gm,q , we get the following:

THEOREM 3.1. Let m ≥ 2 and r ≥ 2. Then we have

dimCm(pr) =
{

2 , if m = p = r = 2 ,
mr , otherwise .

PROOF. When m = p = r = 2, direct calculation shows dimC2(4) = 2. Otherwise,
we can see rankGm,q = m, and can verify by the definition of Gm,q , that the linear mapping
tr : C̄m(q) → tr C̄m(q) = Cm(q) becomes injective (otherwise tr would be a constant
mapping). The code C̄m(q) has qm = pmr vectors, and so does Cm(q). �

EXAMPLE 3.2. The generator matrix of C̄3(4).

Let γ be a primitive element of F4. Then γ 3 = 1 and γ 2 + γ + 1 = 0. Then we have

G3,4 =
⎛
⎝ 1 γ γ 2 1 γ γ 2 1 γ γ 2

1 1 1 γ γ γ γ 2 γ 2 γ 2

1 γ−1 γ−2 γ−1 γ−2 1 γ−2 1 γ−1

⎞
⎠

=
⎛
⎝ 1 γ γ 2 1 γ γ 2 1 γ γ 2

1 1 1 γ γ γ γ 2 γ 2 γ 2

1 γ 2 γ γ 2 γ 1 γ 1 γ 2

⎞
⎠ .

4. Quasi-cyclic Property

As we mentioned in Introduction, the hyper-Kloosterman codeCm(q) is a generalization
of the Kloosterman code, which is a cyclic code. The Hamming weights of the codewords
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of Cm(q) can be expressed by the hyper-Kloosterman sums Km(a; q), which are obtained by
increasing the number of variables of the Kloosterman sums:

K(α, β; q) =
∑
x∈F×

q

e(tr (αx + βx−1)). (α, β ∈ Fq) (4.1)

What will happen to the code Cm(q) by this generalization? The answer is the quasi-cyclic
property. So we begin this section by introducing the notion of the quasi-cyclic code:

DEFINITION 4.1. A code C is called s-quasi-cyclic if

cn−s+1 · · · cnc1c2 · · · cn−s ∈ C
holds for every codeword c1c2 · · · cn ∈ C.

This property depends on the permutation of the coordinates, but if we take Gm,q as the
generator matrix of C̄m(q), we can realize Cm(q) as a quasi-cyclic code:

THEOREM 4.2. The code Cm(q) is (q − 1)m−2-quasi-cyclic.

PROOF. Take a codeword (a1, a2, · · · , am)Gm,q of C̄m(q) and apply a cyclic shift of
(q − 1)m−2 digits to it. Then we can verify that the resulting vector is

(a1, a2, · · · , am−2, am−1γ
q−2, amγ

−(q−2))Gm,q

and it is an element of C̄m(q). Thus C̄m(q) is (q − 1)m−2-quasi-cyclic, and so is Cm(q). �

EXAMPLE 4.3. C3(4).

We can obtain the following table of the codewords of C3(4) (this is one of the applica-
tions of the algorithm explained in Appendix):

Weight 0:
000000000

Weight 2:
000010001
000100010
000001100
010001000
100010000
001100000
001000010
010000100

100000001

Weight 4:
011100100
110001001
101010010
011001010
101100001
110010100
100100011
001001110
010010101

100001101
010100110
001010011
100011100
001110001
010101010
100110010
010011001
001101100
000101110
110000101
101110000

101000011
011101000
000011101
110011000
000110011
011000110

Weight 6:
110111010
101001111
101111100
011010111

110100111
011111001
000111111
111010110
001111101
010111011
111100101
111001011
100111110
111111000
111101001
010110111

100101111
111011010
001011111
111110100
111000111
011011011
110110110
101101101
011110101
101011110
110101011

Since this is the case q = 4 and m = 3, it is 3-quasi-cyclic. Take for example, the codeword
000010001 (the first one of weight 2). Move the last 3 digits of it to the beginning and shift
the remainder to follow them. Then we get another codeword 001000010 (the seventh one of
weight 2). The same procedure to 001000010 will produce 010001000, which is the fourth
one. This also holds for all other codewords.
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Quasi-cyclic codes have been investigated by lots of authors since Townsend-Weldon [9],
but it seems that no one has ever considered the codes of our type, quasi-cyclic trace codes.
Thus our argument suggests a new method of constructing quasi-cyclic codes: in principle, a
trace code described by roots of polynomials have a quasi-cyclic generalization in a similar
way. Here we give another example:

EXAMPLE 4.4. Quasi-cyclic generalization of the simplex code.

Let p be a prime, q = pr (r ≥ 2) and F×
q = 〈γ 〉. The simplex code (the dual of the

Hamming code when p = 2) is the trace code of the code over Fq with a generator matrix

G = (1, γ , γ 2, · · · , γ q−2) .

For m ≥ 1, we define a m by (q − 1)m matrix

Gm =

⎛
⎜⎜⎜⎜⎜⎝

1 γ γ 2 · · · γ q−2

1 1 · · · 1
1 1 · · · 1
... · · ·
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

1 γ γ 2 · · · γ q−2

γ γ · · · γ

1 1 · · · 1
... · · ·
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
· · ·

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 γ γ 2 · · · γ q−2

γ q−2 γ q−2 · · · γ q−2

γ q−2 γ q−2 · · · γ q−2

.

.. · · ·
γ q−2 γ q−2 · · · γ q−2

⎞
⎟⎟⎟⎟⎟⎟⎠

and consider the trace code of the code with a generator matrixGm. It has a realization

Sm(q) = {ψm(a) := {tr (a1x1 + · · · + amxm)}(x1,··· ,xm)∈(F×
q )
m | a = (a1, · · · , am) ∈ (F×

q )
m} .

It is a [(q − 1)m,mr]-code (by the same argument as in Theorem 3.1), and is a (q − 1)m−1-
quasi-cyclic generalization of the simplex code.

5. Appendix — Calculation of the Kloosterman sums

The purpose of this Appendix is to propose an efficient algorithm for calculating the
Kloosterman sums over finite fields. But the essential idea is how to calculate fast the trace
of elements in the finite field Fq to the prime field Fp. Thus it can be applied to other similar
cases where values of the trace function are needed (see Example 4.3).

5.1. The main idea. Let p be a prime number and q = pr for some integer r ≥ 2. We
denote by Fq the finite field with q elements. We would like to calculate tr (α) for α ∈ Fq×
which is given by

tr (α) = α + αp + · · · + αp
r−1
. (5.1)
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Fix a primitive element γ ∈ Fq× and let f (X) ∈ Fp[X] be the minimal polynomial of
γ . We assume that we know the explicit form of f (X) (i.e. we know all the coefficients of
f (X) explicitly). In this situation, we can calculate tr (α)’s fast and easily.

To begin with, note that we can express α ∈ Fq× in 2 ways: one is the expression in a
power of γ , and the other is, so to speak, the “polynomial expression”, i.e. the expression in
polynomials of γ over Fp, of which the degrees are less than r . Let α = γ j (0 ≤ j ≤ q − 2).
Then the polynomial expression of α is obtained by reduction of γ j mod f (γ ). Suppose for
any k (0 ≤ k ≤ q − 2), the polynomial expression of γ k is given by hk(γ ):

γ k = hk(γ ) (hk(X) ∈ Fp[X]) . (5.2)

The following theorem is the key for fast calculation:

THEOREM 5.1. For any j (0 ≤ j ≤ q − 2), we have

tr (γ j ) = hj (0)+ hjp (mod q−1)(0)+ · · · + hjpr−1 (mod q−1)(0) .

PROOF. The definition of the trace function implies

tr (γ j ) = hj (γ )+ hjp (mod q−1)(γ )+ · · · + hjpr−1 (mod q−1)(γ ) .

But the terms except for the constant term with respect to γ in the above formula must vanish
because {1, γ , γ 2, · · · , γ r−1} is a basis of Fq as a vector space over Fp, and tr (γ j ) ∈ Fp.
Hence we get the theorem. �

This theorem shows that all the information we need to calculate tr (γ j )’s is the constant
terms of the polynomial expressions hj (γ )’s.

5.2. Kloosterman sums. In this section we will see how Theorem 5.1 can be used in
numerical calculation by looking at an example of the Kloosterman sums (4.1).

If a := αβ ∈ Fq×, then we have

K(α, β; q) = K(a; q) :=
∑
x∈F×

q

e(tr (ax + x−1)) . (5.3)

If we fix a field Fq , its primitive element γ , and know the minimal polynomial f (X) of γ ,
then we can write a simple and fast program to calculate all theK(a; q)’s. Here is an example
program in the C language:

EXAMPLE 5.2. Kloosterman sums over F81.

Let γ be a root of X4 + X + 2, which is a primitive polynomial over F3. The following
program finds all the K(γ k; 81)’s for 0 ≤ j ≤ q − 2. The former half of the program (lines
7–19) calculates the constant term of the polynomial expression hj (γ ), which is stored in the
array x[j]. The latter half is the main part, the calculation of K(γ k; 81)’s (lines 21–39).
According to Theorem 5.1, tr (γ j ) is given by

(x[j]+x[3*j%80]+x[9*j%80]+x[27*j%80])%3
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in the notation of the C language. Let

t (k) = �{x ∈ F×
q | tr (x + ax−1) = k} (0 ≤ k ≤ p − 1) .

Then we can easily see that

K(γ k; 81) =
2∑
k=0

t (k) cos(2πk/3) = t (0)− (t (1)+ t (2))/2 .

In the program below, the element γ is denoted by a.

1: #include <stdio.h>
2: main()
3: {
4: int b, j, k, t[3];
5: char coef[5], x[80];
6: /* ----- Calculation of the polynomial expressions ----- */
7: coef[0]=1;
8: for( k=1; k<80; ++k )
9: {

10: for( j=4; j>0; --j )coef[j]=coef[j-1];
11: coef[0]=0;
12: if( coef[4]>0 )
13: {
14: coef[1]=(coef[1]+coef[4]*2)%3; coef[0]=(coef[0]+coef[4])%3;
15: /* coef[4]=0; This line can be omitted. */
16: }
17: x[k]=coef[0];
18: }
19: x[0]=1;
20: /* ----- Calculation of the Kloosterman sums ----- */
21: for( k=0; k<80; ++k )
22: {
23: t[0]=0; t[1]=0; t[2]=0;
24: for( j=0; j<80; ++j )
25: {
26: b=( x[j]+x[(80+k-j)%80]
27: +x[3*j%80]+x[3*(80+k-j)%80]
28: +x[9*j%80]+x[9*(80+k-j)%80]
29: +x[27*j%80]+x[27*(80+k-j)%80])%3;
30: switch( b )
31: {
32: case 0: ++t[0]; break;
33: case 1: ++t[1]; break;
34: default: ++t[2]; break;
35: }
36: }
37: printf( "K(a^%d, 81)=%d\n", k, t[0]-(t[1]+t[2])/2 );
38: }
39: }
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REMARK. It is quite easy to write a program for the hyper-Kloosterman sums (1.2)
with m ≥ 3, using the above algorithm. But in practice, it is hard to calculate them because
the complexity increases rapidly as m becomes large. It is faster to use the linear recurrence
relation

Km(γ
k; q) =

q−2∑
j=0

e(tr (γ k−j ))Km−1(γ
j ; q)

(which is a variant of the formula (2.1) of [4]) with the initial values K2(γ
k; q) = K(γ k; q).

The tables of Section 2 are obtained by the algorithm of this section, together with this recur-
rence.

References

[ 1 ] K. CHINEN and T. HIRAMATSU, Hyper-Kloosterman sums and their applications to the coding theory, Appl.
Algebra Engrg. Comm. Comput. 12 (2001), 381–390.

[ 2 ] T. HIRAMATSU, Uniform distribution of the weights of the Kloosterman codes, SUT J. Math. 31 (1995),
29–32.

[ 3 ] G. LACHAUD, Distribution of the weights of the dual of the Melas code, Discrete Math. 79 (1989/90), 103–
106.

[ 4 ] D. H. and E. LEHMER, The cyclotomy of hyper-Kloosterman sums, Acta Arith. 14 (1968), 89–111.
[ 5 ] F. J. MACWILLIAMS and N. J. A. SLOANE, The Theory of Error Correcting Codes, North Holland (1977).
[ 6 ] C. M. MELAS, A cyclic code for double error correction, IBM J. Res. Devel. 4 (1960), 364–366.
[ 7 ] Séminair de géométrie algébrique du Bois-marie SGA4 1

2 , Lecture Notes in Math. 569, Springer (1977).
[ 8 ] H. STICHTENOTH, Algebraic Function Fields and Codes, Springer (1993).
[ 9 ] R. L. TOWNSEND and E. L. WELDON, JR., Self-orthogonal quasi-cyclic codes, IEEE Trans. Inform. Theory,

IT-13 No. 2 (1967), 183–195.
[10] J. WOLFMANN, The weights of the dual code of the Melas code over GF(3), Discrete Math. 74 (1989), 327–

329.

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING,
OSAKA INSTITUTE OF TECHNOLOGY,
OMIYA, ASAHI-KU, OSAKA, 535–8585 JAPAN.
e-mail: YHK03302@nifty.ne.jp


