Abstract
The degenerate Neumann problem \[ \begin{cases} \ \displaystyle \sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_i\partial x_j}=f(x,u,Du) & \text{in}\ \Omega ,\\ \ a(x)\dfrac{\partial u}{\partial v}+b(x)u=\varphi(x) & \text{on}\ \Gamma \end{cases} \] is studied in the case where $a(x)$ and $b(x)$ are non-negative functions on $\Gamma$ such that $a(x)+b(x)>0$ on $\Gamma$. A classical existence and uniqueness theorem in the Hölder space $C^{2+\alpha}(\bar{\Omega})$ is proved under suitable regularity and structure conditions on the data.
Citation
Dian K. PALAGACHEV. Peter R. POPIVANOV. Kazuaki TAIRA. "A Degenerate Neumann Problem for Quasilinear Elliptic Equations." Tokyo J. Math. 23 (1) 227 - 234, June 2000. https://doi.org/10.3836/tjm/1255958817
Information