Open Access
June 2000 A Degenerate Neumann Problem for Quasilinear Elliptic Equations
Dian K. PALAGACHEV, Peter R. POPIVANOV, Kazuaki TAIRA
Tokyo J. Math. 23(1): 227-234 (June 2000). DOI: 10.3836/tjm/1255958817

Abstract

The degenerate Neumann problem \[ \begin{cases} \ \displaystyle \sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_i\partial x_j}=f(x,u,Du) & \text{in}\ \Omega ,\\ \ a(x)\dfrac{\partial u}{\partial v}+b(x)u=\varphi(x) & \text{on}\ \Gamma \end{cases} \] is studied in the case where $a(x)$ and $b(x)$ are non-negative functions on $\Gamma$ such that $a(x)+b(x)>0$ on $\Gamma$. A classical existence and uniqueness theorem in the Hölder space $C^{2+\alpha}(\bar{\Omega})$ is proved under suitable regularity and structure conditions on the data.

Citation

Download Citation

Dian K. PALAGACHEV. Peter R. POPIVANOV. Kazuaki TAIRA. "A Degenerate Neumann Problem for Quasilinear Elliptic Equations." Tokyo J. Math. 23 (1) 227 - 234, June 2000. https://doi.org/10.3836/tjm/1255958817

Information

Published: June 2000
First available in Project Euclid: 19 October 2009

zbMATH: 0960.35043
MathSciNet: MR1763514
Digital Object Identifier: 10.3836/tjm/1255958817

Rights: Copyright © 2000 Publication Committee for the Tokyo Journal of Mathematics

Vol.23 • No. 1 • June 2000
Back to Top