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Abstract. The degenerate Neumann problem

$\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a_{ij}(x)\frac{\partial^{2}u}{\partial x_{ij}\partial x}=f(x, u, Du) & in \Omega,\\a(x)\frac{\partial u}{\partial v}+b(x)u=\varphi(x) & on \Gamma\end{array}\right.$

is studied in the case where $a(x)$ and $b(x)$ are non-negative functions on $\Gamma$ such that $a(x)+b(x)>0$ on $\Gamma$ . A
classical existence and uniqueness theorem in the Holder space $C^{2+\alpha}(\overline{\Omega})$ is proved under suitable regularity and
structure conditions on the data.

1. Introduction and Main Theorem.

Let $\Omega$ be a bounded domain of Euclidean space $R^{n},$ $n\geq 2$ , with smooth boundary $\Gamma$

and let $v(x)$ be the unit exterior normal to $\Gamma$ . In this paper we study the following quasilinear
elliptic boundary value problem:

(1.1) $\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}=f(x, u, Du) & in \Omega,\\a(x)\frac{\partial u}{\partial v}+b(x)u=\varphi(x) & on \Gamma.\end{array}\right.$

Here $a(x)$ and $b(x)$ are non-negative functions defined on $\Gamma$ , and $Du$ stands for the gradient
$(\partial u/\partial x_{1}, \partial u/\partial x_{2}, \cdots , \partial u/\partial x_{n})$ of $u$ . Later on, we will denote by $C^{k+\alpha}(\overline{\Omega})$ the H\"older space
of k-times continuously differentiable functions on the closure $\overline{\Omega}=\Omega\cup\Gamma$ whose k-th order
derivatives are H\"older continuous with exponent $\alpha$ and also by $\Vert\cdot\Vert_{C^{k+\alpha}(\overline{\Omega})}$ its usual norm.
The Sobolev space of k-times weakly differentiable functions in $\Omega$ whose derivatives up to
order $k$ belong to $L^{p}(\Omega)$ will be denoted as usual by $W^{k,p}(\Omega)$ . The letter $C$ stands for a
generic positive constant depending only on known quantities but not on $u$ , which may vary
from a line into another.
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The linear problem (1.1) (i.e. $f(x,$ $z,$ $p)=\sum_{i}b^{i}(x)p_{i}+c(x)z$ ) has been well studied $i|$

the recent years by Taira [9] and [10] both in the frameworks of H\"older and Sobolev $space^{\sigma}L$

In the case where the function $f$ is nonlinear in $u$ but independent of $Du$ (i.e. $f(x, z, p)=$

$f(x, z))$ , there is a similar result due to Taira-Umezu [12] where a global static bifurcatio
theory is elaborated. We should also note the recent paper Taira [11] where the homogeneou
problem (1.1) $(\varphi\equiv 0)$ with divergence form linear elliptic operator has been studied $b$

means of the super-subsolution method. The interest to the problems of type (1.1) is prompte $($

by their importance in probability theory and stochastic processes, as well as in Riemannia]

geometry. Thus the second-order differential operator in the problem (1.1) is called a diffusio
operator describing analytically a strong Markov process with continuous paths in the stat
space $\Omega$ (see [2], [10]) while the two terms $a(x)(\partial u/\partial v)$ and $b(x)u$ of the boundary conditio
correspond to reflection and absorption phenomena on $\Gamma$ , respectively. On the other hand, th
problem (1.1) with $f(x, z, p)=f(x)z^{(n+2)/(n-2)},$ $n\geq 3$ , is related to the so-called Yamab
problem which is a basic problem in Riemannian geometry (see [3], [6], [7]).

In this paper the data of the problem (1.1) will be subject to the following conditions:
Uniform ellipticity condition: There exists a positive constant $a_{0}$ such that

(1.2) $\sum_{i,j=1}^{n}a^{ij}(x)\xi_{i}\xi_{j}\geq a_{0}|\xi|^{2}$ for all $x\in\overline{\Omega},$ $\xi\in R^{n},$ $a^{ij}(x)=a^{ji}(x)$ .

Regularity conditions:

(1.3) $\left\{\begin{array}{ll}a^{ij}\in C^{\infty}(\overline{\Omega}), f(x, z, p)\in C^{\alpha}(\overline{\Omega}\times R\times R^{n}), & 0<\alpha<1,\\f(x, z, p) is continuously differentiable with resp & ct to z and p.\end{array}\right.$

Monotonicity condition: There exists a positive constant $f_{0}$ such that

(1.4) $\frac{\partial f}{\partial z}(x, z, p)\geq f_{0}$ for all $(x, z, p)\in\overline{\Omega}\times R\times R^{n}$

Quadratic gradient growth condition: There exists a positive and non-decreasing func
tion $f_{1}(t)$ such that

(1.5) $|f(x, z, p)|\leq fl(|z|)(1+|p|^{2})$ for all $(x, z, p)\in\overline{\Omega}\times R\times R^{n}$

Our final condition concems the behavior of the functions $a$ and $b$ on $\Gamma$ :

(1.6) $\left\{\begin{array}{l}a(x),b(x)\in C^{\infty}(\Gamma)\\a(x)\geq 0,b(x)\geq 0,a(x)+b(x)>0x\in\Gamma\end{array}\right.$

It should be noted that the condition (1.6) allows the problem (1.1) to include both the purel
Dirichlet $(a(x)\equiv 0)$ and Neumann $(b(x)\equiv 0)$ boundary conditions as particular cases. $Wh^{\Gamma}$

is the important feature, however, of the condition (1.6) is that the problem (1.1) becomes
singular boundary value problem from an analytical point of view. This is due to the fact $tha|$

having a first order pseudo-differential operator $T$ on $\Gamma$ , the so-called Shapiro-Lopatinski
complementary condition is violated at the points $ x\in\Gamma$ where $a(x)=0$ . In fact, the mai
difficulty of the problem (1.1) comes from the fact that the operator $T$ is not of principal typ
(see [9]). Amann-Crandall [1] studied the non-degenerate case; more precisely they assum
that the boundary $\Gamma$ is the disjoint union of the two closed subsets $\Gamma_{0}=\{x\in\Gamma$ : $a(x)=0$
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and $\Gamma_{1}=\{x\in\Gamma : a(x)>0\}$ , each of which is an $(n-1)$ -dimensional compact smooth
manifold. On the other hand, the intuitive meaning of the requirement $a(x)+b(x)>0$
on $\Gamma$ is that, for the diffusion process described by the problem (1.1), either the reflection
phenomenon or the absorption phenomenon occurs at each point of the boundary $\Gamma$ (see
[10]).

The main purpose of the present paper is to extend the above cited results by Taira [11]

and Taira-Umezu [12] to the non-homogeneous problem (1.1) allowing quadratic nonlinearity
in $f$ with respect to the gradient $Du$ of the unknown function $u$ . We prove an existence and
uniqueness theorem for the problem (1.1) in the H\"older space $C^{2+\alpha}(\overline{\Omega})$ . This is carried
out by utilizing the Leray-Schauder fixed point theorem which reduces the solvability of the
problem (1.1) to the establishment of an a priori estimate in $C^{1+\alpha}(\overline{\Omega})$ for all solutions to a
family related to the problem (1.1). The deriving of the desired a priori estimate is a two-
step process consisting of successive bounds on I $u||_{C(\overline{\Omega})}$ and $||Du||_{C^{\alpha}(\overline{\Omega})}$ . The estimate of
$\Vert u\Vert_{C(\overline{\Omega})}$ follows, as usual, by using the maximum principle. As it concems the a priori bound
for $\Vert Du\Vert_{C^{\alpha}(\overline{\Omega})}$ , after reducing it to an estimate for $\Vert Du\Vert_{W^{1,p}(\Omega)}$ with $p=n/(1-\alpha)$ (recall

the Sobolev imbedding $W^{1,p}(\Omega)\rightarrow C^{\alpha}(\overline{\Omega}))$ , we apply a $W^{2,p}(\Omega)- a$ priori bound for the
solutions to the problem (1.1) derived by Taira [11]. A very important role in this procedure
is played by the conditions (1.4) and (1.5), as well as by the results of Taira [10] on the
isomorphic properties in H\"older and Sobolev spaces of the linear operators appearing in the
problem (1.1).

Following Taira [9] and [10], we introduce the next interpolation Banach space

$C_{*}^{1+\alpha}(\Gamma)=\{\varphi=a(x)\varphi_{1}+b(x)\varphi_{2} : \varphi_{1}\in C^{1+\alpha}(\Gamma), \varphi_{2}\in C^{2+\alpha}(\Gamma)\}$ ,

equipped with the norm
$\Vert\varphi\Vert_{C_{*}^{1+\alpha}(\Gamma)}=\inf\{||\varphi_{1}||_{C^{1+\alpha}(\Gamma)}+\Vert\varphi_{2}\Vert_{C^{2+\alpha}(\Gamma)} : \varphi=a(x)\varphi_{1}+b(x)\varphi_{2}\}$ .

Now our main theorem can be stated as follows:

THEOREM 1.1. Suppose that the conditions $(l.2)$ through (1.6) are fulfilled. Then the
problem (1.1) admits a unique classical solution $u\in C^{2+\alpha}(\overline{\Omega})$ for each $\varphi\in C_{*}^{1+\alpha}(\Gamma)$ .

For Theorem 1.1, we give a simple example of the function $f(x, z, p)$ :

EXAMPLE 1.2. $f(x, z, p)=z\pm|p|^{2}$ . In this case one may take $f_{0}=1$ and $f_{1}(t)=$

$1+t$ .
Theorem 1.1 will be extended to the integro-differential operator case in the forthcoming

paper Palagachev-Popivanov-Taira [8].

2. Proof of Main Theorem.

As it was mentioned above, the main theorem, Theorem 1.1 will be proved by making
use of the Leray-Schauder fixed point theorem. For this purpose, we need to establish an $a$

priori estimate for the $C^{1+\alpha}(\overline{\Omega})$ -norm of each solution $u\in C^{2+\alpha}(\overline{\Omega})$ to the problem (1.1).
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Let us start with the following comparison principle for quasilinear operators:

LEMMA 2.1. Suppose that the conditions (1.2) and (1.6) are fulfilled and $thp$

$f(x, z, p)$ is increasing in $z$ for each $(x, p)\in\Omega\times R^{n}$ and is differentiable with respect to

for each $(x, z)\in\Omega\times$ R. Let $u,$
$v\in C^{2}(\Omega)\cap C^{1}(\overline{\Omega})$ satisfy the conditions

$\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}-f(x, u, Du)\geq\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}v}{\partial x_{i}\partial x_{j}}-f(x, v, Dv) & in \Omega,\\a(x)\frac{\partial u}{\partial v}+b(x)u\leq a(x)\frac{\partial v}{\partial v}+b(x)v & on \Gamma.\end{array}\right.$

Then itfollows that $u\leq v$ on S2.
PROOF. Let $w=u-v$ , and suppose to the contrary that the set

$\Omega^{+}=\{x\in\Omega : w(x)>0\}=\{x\in\Omega : u(x)>v(x)\}$

is non-empty. Then it follows that

$\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}w}{\partial x_{i}\partial x_{j}}+f(x, u, Dv)-f(x, u, Du)\geq f(x, u, Dv)-f(x, v, Dv)$

$>0$ in $\Omega^{+}$

since $f(x, z, p)$ increases with respect to the second argument $z$ Thus, by letting

$b^{i}(x)=-\int_{0}^{1}\frac{\partial f}{\partial p_{i}}(x, u(x),$ $tDw(x)+Dv(x))dt$ ,

we obtain that

$\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}w}{\partial x\partial x}+\sum_{i=1}^{n}b^{j}(x)\frac{\partial w}{\partial x_{i}}>0$ in $\Omega^{+}$

If $x_{0}$ is a point of $\overline{\Omega}$ such that $w(x_{0})=\max_{\overline{\Omega}}w(x)>0$ , then it follows from an applicatic
of the strong interior maximum principle (cf. [5, Theorem 3.5]) that

$ x_{0}\in\partial\Omega^{+}\cap\Gamma$ .

Thus we have, by the boundary point lemma (cf. [5, Lemma 3.4]),

$\frac{\partial w}{\partial v}(x_{0})>0$ .

However it follows from the condition (1.6) that

$Bw(x_{0})=a(x_{0})\frac{\partial w}{\partial v}(x_{0})+b(x_{0})w(x_{0})>0$ .

This contradicts the boundary condition $Bw(x_{0})=Bu(x_{0})-Bv(x_{0})\leq 0$ .
Therefore we have proved that the set $\Omega^{+}$ is empty, and the statement follows. $\square $

2.1. A priori estimate for $\Vert u\Vert_{C(\overline{\Omega})}$ . As the first step in obtaining the desired a prio
estimate, we will consider the homogeneous case. Namely, let $u\in C^{2+\alpha}(\overline{\Omega})$ be a solution
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the problem

(2.1) $\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial_{X_{i}}\partial x_{j}}=f(x, u, Du) & in \Omega,\\a(x)\frac{\partial u}{\partial v}+b(x)u=0 & on \Gamma.\end{array}\right.$

Then we have the following estimate:

LEMMA 2.2. Suppose that the conditions (1.2), (1.3), (1.4) and (1.6) are fulfilled, and
let $u\in C^{2}(\Omega)\cap C^{1}(\overline{\Omega})$ be a solution to the problem (2.1). Then we have the estimate

(2.2) $\Vert u||_{C(\overline{\Omega})}=\max\overline{\Omega}|u(x)|\leq\frac{\max_{\overline{\Omega}}|f(x,0,0)|}{f_{0}}$

PROOF. By letting

$K=\frac{\max_{\overline{\Omega}}|f(x,0,0)|}{f_{0}}$

we obtain that

$\sum_{l,j=1}^{n}a^{ij}(x)\frac{\partial^{2}K}{\partial X_{i}\partial x_{j}}-f(x, K, DK)=-f(x, K, 0)$

$=-K\int_{0}^{1}\frac{\partial f}{\partial z}(x, tK, O)dt-f(x, 0,0)$

$\leq-Kf_{0}-f(x, 0,0)$

$\leq 0$ for each $ x\in\Omega$ ,

as a consequence of the condition (1.4). Hence it follows that

$\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}-f(x, u, Du)=0$

$\geq\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}K}{\partial x_{i}\partial x_{j}}-f(x, K, DK)$ in $\Omega$ .

On the other hand, we have

$a(x)\frac{\partial u}{\partial v}+b(x)u=0\leq b(x)K=a(x)\frac{\partial K}{\partial v}+b(x)K$ on $\Gamma$ .

Therefore it follows from an application of Lemma 2.1 that $u(x)\leq K$ for each $x\in\overline{\Omega}$ .
Repeating the above considerations with $u(x)$ replaced $by-u(x)$ and $f(x, z, p)$ replaced

$by-f(x, -z, -p)$ , respectively, we obtain $that-u(x)\leq K$ for each $x\in\overline{\Omega}$ .
Summing up, we have proved the estimate (2.2). $\square $

2.2. A priori estimate for $[u]_{C^{1+\alpha}(\overline{\Omega})}$ . After having the estimate (2.2), the desired
bound on $\Vert u||_{C^{1+\alpha}(\overline{\Omega})}$ will follow immediately if we have a uniform estimate for the H\"older
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seminorm
$[u]_{C^{1+\alpha}(\overline{\Omega})}$ $;=[Du]_{C^{\alpha}(\overline{\Omega})}=\sup_{x,y\in\Omega}\frac{|Du(x)-Du(y)|}{|x-y|^{\alpha}}$ .

On the other hand, the Morrey lemma assures the imbedding of the Sobolev space $W^{2,p}(\Omega_{J}^{\backslash }$

into the H\"older space $C^{1+\alpha}(\overline{\Omega})$ with $p=n/(1-\alpha)$ . Therefore the bound on $[Du]_{C^{\alpha}(\overline{\Omega}}$

becomes equivalent to a uniform (with respect to u) estimate of the Sobolev norm $\Vert u\Vert_{W^{2.p}(\Omega}$

,

for each solution $u$ to the problem (2.1). The last norm, however, is estimated in terms $0l$

$\Vert u\Vert_{C(\overline{\Omega})}$ as is shown in [11, Proposition 2.3]. More precisely, there exists a non-negative $ane$

increasing function $\gamma(t)$ , depending only on known quantities, such that

(2.3) $||u||_{W^{2,p}(\Omega)}\leq\gamma(||u||_{C(\overline{\Omega})})$

for each solution $u\in W^{2,p}(\Omega)$ to the homogeneous problem (2.1).

In this way we have the following result:

THEOREM 2.3. Suppose that the conditions (1.2) through (1.6) are fulfilled. Then
there exists a positive constant $C$, independent of $u$, such that

(2.4) $\Vert u||_{C^{1+\alpha}(\overline{\Omega})}\leq C$

for each solution $u\in C^{2+\alpha}(\overline{\Omega})$ to the problem (1.1) with $\varphi\in C_{*}^{1+\alpha}(\Gamma)$ .
PROOF. The estimate (2.4) is an immediate consequence of Lemma 2.2, the Morre]

lemma and the estimate (2.3) in the case where $u$ solves the homogeneous problem (2.1).

To deal with the non-homogeneous problem (1.1), note that [10, Theorem 1.1] implies
the existence of a unique solution $v\in C^{2+\alpha}(\overline{\Omega})$ to the linear problem

$\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}v}{\partial x_{i}\partial x_{j}}-v=0 & in \Omega,\\a(x)\frac{\partial v}{\partial v}+b(x)v=\varphi & on \Gamma,\end{array}\right.$

and further the norm $\Vert v\Vert_{C^{2+\alpha}(\overline{\Omega})}$ depends continuously on the norm $||\varphi\Vert_{C_{*}^{1+\alpha}(\Gamma)}$ . Hence, $il$

$u$ is a solution to the problem (1.1), then the function $w=u-v$ solves the homogeneous
problem

$\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}w}{\partial_{X_{i}}\partial_{X_{j}}}=\overline{f}(x, w, Dw) & in \Omega,\\a(x)\frac{\partial w}{\partial v}+b(x)w=0 & in \Gamma,\end{array}\right.$

with the nonlinear term $\overline{f}(x, z, p)=f(x, z+v(x),$ $p+Dv(x))-v(x)$ . Moreover, the
conditions (1.4) and (1.5) are fulfilled by the function $\overline{f}(x, z, p)$ .

Therefore, the estimate (2.4) holds for the function $w$ and so it is satisfied also by $u=$

$v+w$ with a new positive constant $C$ depending on $\Vert v\Vert_{C^{2+\alpha}(\overline{\Omega})}$ , i.e., on $||\varphi\Vert_{C_{*}^{1+\alpha}(\Gamma)},$
$iI$

addition. $\square $

2.3. Proof of Theorem 1.1. The uniqueness assertion follows immediately from thc
comparison principle (Lemma 2.1).



DEGENERATE NEUMANN PROBLEM 233

In order to prove the existence part, we shall make use of the Leray-Schauder fixed point
theorem (see [4, Theorem 5.4.14]; [5, Theorem 11.3]):

THEOREM 2.4. Let $f(x, t)$ be $a$ one-parameter family of compact operators defined
on a Banach space Xfor $t\in[0,1]$ , with $f(x, t)$ uniformly continuous in tforfixed $x\in X$ .
Furthemore suppose that every solution $ofx=f(x, t)$ for each $t\in[0,1]$ is contained in the
fixed open ball $\Sigma=\{x\in X : \Vert x\Vert<M\}$ . Then, assuming $f(x, 0)\equiv 0$ , the opemtor $f(x, 1)$

has afixedpoint $ x\in\Sigma$ .

Let $v\in C^{1+\alpha}(\overline{\Omega})$ , and consider the linear problem

(2.5) $\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}=f(x, v, Dv) & in \Omega ,\\a(x)\frac{\partial u}{\partial v}+b(x)u=\varphi(x) & on \Gamma.\end{array}\right.$

Then, in view of the condition (1.3) it follows that $f(x, v, Dv)\in C^{\alpha}(\overline{\Omega})$ . Therefore [10,

Theorem 1.1] asserts the unique classical solvability in the H\"older space $C^{2+\alpha}(\overline{\Omega})$ of the
problem (2.5). Defining a nonlinear operator

$\mathcal{H}$ : $C^{1+\alpha}(\overline{\Omega})\rightarrow C^{2+\alpha}(\overline{\Omega})\rightarrow\rightarrow C^{1+\alpha}(\overline{\Omega})compactly$

by the formula $\mathcal{H}v=u$ , it is an immediate consequence of the cited Taira’s result that $\mathcal{H}$ is a
continuous operator. Indeed, as shows [10, Theorem 1.1] the mapping

$u\mapsto(\sum_{i,j=1}^{n}a^{ij}\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}},$ $a\frac{\partial u}{\partial v}+bu)$

is an algebraic and topological isomorphism of $C^{2+\alpha}(\overline{\Omega})$ onto $C^{\alpha}(\overline{\Omega})\oplus C_{*}^{1+\alpha}(\Gamma)$ for
$\alpha\in(0,1)$ . This implies the continuity of $\mathcal{H}$ considered as an operator from $C^{1+\alpha}(\overline{\Omega})$ into
$C^{2+\alpha}(\overline{\Omega})$ . Furthermore, since the space $C^{2+\alpha}(\overline{\Omega})$ is compactly imbedded into the space
$C^{1+\alpha}(\overline{\Omega})$ , we derive immediately also the compactness of the mapping $\mathcal{H}$ : $ C^{1+\alpha}(\overline{\Omega})\rightarrow$

$C^{1+\alpha}(\overline{\Omega})$ .
Now, for each $\rho\in[0,1]$ , consider the equation $u=\rho \mathcal{H}u$ , that is, the problem

(2.6) $\left\{\begin{array}{ll}\sum_{i,j=1}^{n}a^{ij}(x)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}=\rho f(x, u, Du) & in \Omega ,\\a(x)\frac{\partial u}{\partial v}+b(x)u=\rho\varphi(x) & on \Gamma.\end{array}\right.$

Then Theorem 2.3 assures the existence of a positive constant $C$ , which depends only on the
data of the problem (1.1) but not on $u$ and $\rho$ , such that

(2.7) $\Vert u\Vert_{C^{1+\alpha}(\overline{\Omega})}\leq C$

for each solution $u\in C^{2+\alpha}(\overline{\Omega})$ to the problem (2.6).
In this way the properties of the operator $\mathcal{H}$ and the estimate (2.7) imply, by Theorem

2.4, the existence of a fixed point $u\in C^{1+\alpha}(\overline{\Omega})$ of the operator $\mathcal{H}$ . The function $u$ becomes a
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solution to the problem (1.1) in view of the definition of $\mathcal{H}$ . Finally, the smoothing propertie
of $\mathcal{H}$ yield that $u=\mathcal{H}u\in C^{2+\alpha}(\overline{\Omega})$ .

The proof of Theorem 1.1 is now complete. $\square $
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