2023 Invariant structure preserving functions and an Oka-Weil Kaplansky density type theorem
James Eldred Pascoe
Tohoku Math. J. (2) 75(4): 465-482 (2023). DOI: 10.2748/tmj.20220412

Abstract

We develop the theory of invariant structure preserving and free functions on a general structured topological space. We show that an invariant structure preserving function is pointwise approximiable by the appropriate analog of polynomials in the strong topology and therefore a free function. Moreover, if a domain of operators on a Hilbert space is polynomially convex, the set of free functions satisfies a Oka-Weil Kaplansky density type theorem-- contractive functions can be approximated by contractive polynomials.

Citation

Download Citation

James Eldred Pascoe. "Invariant structure preserving functions and an Oka-Weil Kaplansky density type theorem." Tohoku Math. J. (2) 75 (4) 465 - 482, 2023. https://doi.org/10.2748/tmj.20220412

Information

Published: 2023
First available in Project Euclid: 12 December 2023

MathSciNet: MR4677195
Digital Object Identifier: 10.2748/tmj.20220412

Subjects:
Primary: 46L52
Secondary: 47A15

Keywords: invariant structure preserving functions , Kaplansky density theorem , Noncommutative function theory , Oka-Weil theorem

Rights: Copyright © 2023 Tohoku University

Vol.75 • No. 4 • 2023
Back to Top