2023 Adelic Euler systems for $\mathbb{G}_m$
David Burns, Alexandre Daoud
Tohoku Math. J. (2) 75(3): 329-346 (2023). DOI: 10.2748/tmj.20220111

Abstract

We define a notion of adelic Euler systems for $\mathbb{G}_m$ over arbitrary number fields and prove that all such systems over $\mathbb{Q}$ are cyclotomic in nature. We deduce that all Euler systems for $\mathbb{G}_m$ over $\mathbb{Q}$ are cyclotomic, as has been conjectured by Coleman, if and only if they validate an analogue of Leopoldt's Conjecture.

Citation

Download Citation

David Burns. Alexandre Daoud. "Adelic Euler systems for $\mathbb{G}_m$." Tohoku Math. J. (2) 75 (3) 329 - 346, 2023. https://doi.org/10.2748/tmj.20220111

Information

Published: 2023
First available in Project Euclid: 25 September 2023

MathSciNet: MR4646366
Digital Object Identifier: 10.2748/tmj.20220111

Subjects:
Primary: 11R42
Secondary: 11R27

Keywords: Euler systems , Iwasawa theory

Rights: Copyright © 2023 Tohoku University

Vol.75 • No. 3 • 2023
Back to Top