2022 Fractional integration for irregular martingales
Dmitriy Stolyarov, Dmitry Yarcev
Tohoku Math. J. (2) 74(2): 253-261 (2022). DOI: 10.2748/tmj.20210104

Abstract

We suggest two versions of the Hardy--Littlewood--Sobolev inequality for discrete time martingales. In one version, the fractional integration operator is a martingale transform, however, it may vanish if the filtration is excessively irregular; the second version lacks the martingale property while being analytically meaningful for an arbitrary filtration.

Citation

Download Citation

Dmitriy Stolyarov. Dmitry Yarcev. "Fractional integration for irregular martingales." Tohoku Math. J. (2) 74 (2) 253 - 261, 2022. https://doi.org/10.2748/tmj.20210104

Information

Published: 2022
First available in Project Euclid: 6 July 2022

MathSciNet: MR4455867
zbMATH: 1503.60051
Digital Object Identifier: 10.2748/tmj.20210104

Subjects:
Primary: 60G42

Keywords: fractional integration , Martingales

Rights: Copyright © 2022 Tohoku University

Vol.74 • No. 2 • 2022
Back to Top