2019 Characteristic cycles of highest weight Harish-Chandra modules and the Weyl group action on the conormal variety
Leticia Barchini
Tohoku Math. J. (2) 71(2): 171-205 (2019). DOI: 10.2748/tmj/1561082595

Abstract

We give an inductive algorithm that computes the action of simple reflections on a subset of basis-vectors of the Borel-Moore homology of the conormal variety associated to the symmetric pair $(\text{Sp}(2n), \text{GL}(n))$.

Citation

Download Citation

Leticia Barchini. "Characteristic cycles of highest weight Harish-Chandra modules and the Weyl group action on the conormal variety." Tohoku Math. J. (2) 71 (2) 171 - 205, 2019. https://doi.org/10.2748/tmj/1561082595

Information

Published: 2019
First available in Project Euclid: 21 June 2019

zbMATH: 07108036
MathSciNet: MR3973248
Digital Object Identifier: 10.2748/tmj/1561082595

Subjects:
Primary: 22E47

Keywords: characteristic cycle , conormal variety

Rights: Copyright © 2019 Tohoku University

Vol.71 • No. 2 • 2019
Back to Top