Open Access
2018 A coupling of Brownian motions in the $\mathcal{L}_0$-geometry
Takafumi Amaba, Kazumasa Kuwada
Tohoku Math. J. (2) 70(1): 139-174 (2018). DOI: 10.2748/tmj/1520564422

Abstract

Under a complete Ricci flow, we construct a coupling of two Brownian motions such that their $\mathcal{L}_0$-distance is a supermartingale. This recovers a result of Lott [J. Lott, Optimal transport and Perelman's reduced volume, Calc. Var. Partial Differential Equations 36 (2009), no. 1, 49–84.] on the monotonicity of $\mathcal{L}_0$-distance between heat distributions.

Citation

Download Citation

Takafumi Amaba. Kazumasa Kuwada. "A coupling of Brownian motions in the $\mathcal{L}_0$-geometry." Tohoku Math. J. (2) 70 (1) 139 - 174, 2018. https://doi.org/10.2748/tmj/1520564422

Information

Published: 2018
First available in Project Euclid: 9 March 2018

zbMATH: 06873677
MathSciNet: MR3772809
Digital Object Identifier: 10.2748/tmj/1520564422

Subjects:
Primary: 53C21
Secondary: 53C44 , 58J65 , 60J05

Keywords: $\mathcal{L}_0$-geometry , approximation by geodesic random walks , coupling of Brownian motions

Rights: Copyright © 2018 Tohoku University

Vol.70 • No. 1 • 2018
Back to Top